RELATING GROUP TOPOLOGIES BY THEIR CONTINUOUS POINTS

KEVIN J. SHARPE

ABSTRACT. Let \(x \) be a point in a topological group \(G \), and for each integer \(n \), let \((1/n)x \) be the set \(\{ y : ny = x \} \) in \(G \). Then I call \(x \) a continuous point if for positive integers \(n \), the subsets \((1/n)x \) are nonvoid and eventually intersect each neighbourhood of the identity \(0 \). I prove the following result and from it three corollaries. Let \(G \) be a divisible abelian group such that \((1/n)0 = \{ 0 \} \) for some integer \(n > 2 \). Suppose there are two group topologies \(\tau_1 \) and \(\tau_2 \) defined on \(G \) and that \(G \) is \(\tau_2 \)-locally compact and \(\sigma \)-compact, and define \(\omega_2 \) to be the outer measure derived from the Haar measure \(\mu_2 \) on \((G, \tau_2) \). Also suppose that the ratio of the \(\tau_2 \)-measure of \(\{ nx : x \in A \} \) to the \(\tau_2 \)-measure of \(A \), for any \(\tau_2 \)-Borel-measurable set \(A \) (the ratio is the same for any such \(A \) with finite measure), does not exceed 1. Then for each \(\tau_2 \)-Borel-measurable set \(A \) with nonvoid \(\tau_1 \)-interior, \(\mu_2(A) > \omega_2(W_1) \), where \(W_1 \) is the subgroup of all points in \(G \) which are \(\tau_1 \)-continuous.

The study of compact group topologies for the real line gave rise to the rather interesting questions posed by D. N Hawley [1] and answered by me for \(R^N \) [4]. I propose to present now a generalization of the proofs in [4], something which supplies the basis for the study of what I call the continuous points in a topological group (see [5]). This work forms part of a Ph.D. thesis submitted to La Trobe University in Melbourne, Australia, and was done under the supervision of Dr. Graham Elton.

DEFINITIONS. Let \(G \) be a group (I write my groups additively) and \(A \) a subset of \(G \). It is possible to define two kinds of "\(n \)th-multiples" of the set \(A \):
\[
nA = \{ x_1 + x_2 + \cdots + x_n : x_1, x_2, \ldots, x_n \in A \},
\]
for \(n \) a positive integer, and
\[
o nA = \{ nx : x \in A \},
\]
for \(n \) any integer.

An element \(x \) of \(G \) is divisible (in \(G \)) if for each positive integer \(n \) there is a \(y \) in \(G \) satisfying \(x = ny \). If every element of \(G \) is divisible in \(G \), then \(G \) is said to be divisible. To avoid excess of writing, I put \((1/n)x = \{ y : ny = x \} \), and for \(A \) a subset of \(G \), \(o (1/n)A = \{ y : ny \in A \} \).

Now consider \(G \) to be a topological group. I call a divisible element \(x \) of \(G \)

Received by the editors September 13, 1973 and, in revised form, April 12, 1974 and February 11, 1975.

Key words and phrases. Continuous points, topological group, Haar measure, Hawley property, uniquely rooted group.
a continuous point if the subsets \((1/n)x\), for positive integers \(n\), eventually intersect each neighbourhood of the identity. In other words, if \(A\) is a neighbourhood of the identity and \(x\) is a continuous point, there is a positive integer \(N\) such that for all \(n > N\), \((1/n)x \cap A \neq \emptyset\). I designate the collection of continuous points in \(G\) by \(W\), and if \(G\) is abelian, \(W\) is a subgroup.

Most of this work concerns groups which are divisible and abelian; these I call \(da\) groups for short. I am also concerned with the torsion-free property in that it involves this idea: \(G\) is uniquely \(n\)th-rooted if \(y_1\) and \(y_2\) in \(G\) are such that \(ny_1 = ny_2\), then \(y_1 = y_2\) (\(n\) is a positive integer). If \(G\) is an abelian group, then the uniquely \(n\)th-rooted property is equivalent to \(G\)'s containing no points, except the identity 0, whose \(n\)th-multiple is 0. (Note that if \(x\) in \(G\) is uniquely \(n\)th-rooted, \((1/n)x\) contains at most one point, and I take \((1/n)x\) to be that point.)

First I want to show that \(\circ^nA\) and \(\circ(1/n)A\) are Borel (-measurable) for a Borel set \(A\) and a positive integer \(n\).

Lemma 1. If \(G\) is a \(da\) \(\sigma\)-compact locally compact group, then, for each positive integer \(n\), the function \(f_n: x \rightarrow nx\), for all \(x\) in \(G\), is an open and continuous homomorphism of \(G\) onto \(G\).

Proof. That \(f_n\) is continuous follows simply from the definition of a topological group (see [3, p. 96, part A]), and the open property follows from (5.29) in [2, p. 42].

It is true then that, in any topological group, not only translates and inverses of Borel sets are again Borel, but also that the \(n\)th-multiples of Borel sets are Borel when the group is \(\sigma\)-compact, locally compact and uniquely \(n\)th-rooted.

To my main train of thought. I want to build up to the fact that for certain groups \(G\) with Haar measure \(\mu\), \(\mu(\circ^nA) \leq \mu(A)\) for a positive integer \(n\) and for all \(A\) in \(\mathcal{M}\), the \(\sigma\)-algebra of all Borel sets. To do this define \(\mu^n\) by \(\mu^n(A) = \mu(\circ^nA)\) for all \(A\) in \(\mathcal{M}\). If \(G\) is \(da\), uniquely \(n\)th-rooted, locally compact and \(\sigma\)-compact, then \(\mu^n\) is a Haar measure on \(G\); for instance

\[
\mu^n(x + A) = \mu(\circ^n(x + A)) = \mu(nx + \circ^nA) = \mu(\circ^nA) = \mu^n(A),
\]

for all \(x\) in \(G\) and \(A\) in \(\mathcal{M}\). But the Haar measure on \(G\) is essentially unique, and so there is a positive real \(c_n\) such that \(\mu^n = c_n\mu\). It can be shown that \(c_n\) is the product of integer powers of the prime factors of \(n\), but more important for this study, it can be shown that \(c_n\) is not dependent on the particular Haar measure chosen for the topology. If \(c_n < 1\), then \(\mu(\circ^nA) = \mu^n(A) < \mu(A)\) for all \(A\) in \(\mathcal{M}\), and this would be the case if, for instance, \(G\) contains a compact open subgroup. To summarize these results:

Lemma 2. Let \(G\) be a \(da\), uniquely \(n\)th-rooted, \(\sigma\)-compact, locally compact group with \(c_n < 1\) for some integer \(n > 2\). Then \(\mu(\circ^nA) < \mu(A)\) for all Borel sets \(A\) and for a Haar measure \(\mu\).

Now to my main result.

Theorem 3. Let \(G\) be a \(da\), uniquely \(n\)th-rooted group for some integer \(n > 2\). Suppose there are two group topologies \(\mathcal{E}_1\) and \(\mathcal{E}_2\) defined on \(G\), such that \((G,
\(\mathcal{A}_2 \) is locally compact, \(\sigma \)-compact and for it \(c_n \leq 1 \), and define \(\omega_2 \) to be the outer measure derived from the Haar measure \(\mu_2 \) on \((G, \mathcal{A}_2)\). Then for any \(\mathcal{A}_2 \)-Borel set \(A \) with \(\mathcal{A}_1 \)-interior containing 0,

\[
\omega_2(W_1) \leq \mu_2 \left(\bigcup_{v=0}^{\infty} n^v \left(\bigcap_{m=0}^{\infty} n^m A \right) \right) = \mu_2 \left(\bigcap_{m=0}^{\infty} n^m A \right) \leq \mu_2(A),
\]

where \(W_1 \) is the subgroup of all the points in \(G \) which are \(\mathcal{A}_1 \)-continuous.

PROOF. Let \(A \) be such an \(\mathcal{A}_2 \)-Borel set which contains the \(\mathcal{A}_1 \)-open neighbourhood \(B \) of 0. Then let \(\mathcal{K} = \bigcap_{m=0}^{\infty} n^m A \), and \(\mathcal{L} = \bigcup_{v=0}^{\infty} n^v \mathcal{K} ; \) from Lemma 1 it follows that \(\mathcal{K} \) and, hence, \(\mathcal{L} \) are \(\mathcal{A}_2 \)-Borel.

As each \(x \) in \(W_1 \) is an \(\mathcal{A}_1 \)-continuous point, the sets \((1/u)x \), for positive integers \(u \), eventually intersect \(B \) and, hence, they eventually intersect \(A \). That is: there is a positive integer \(U \) such that for any \(u > U \), \((1/u)x \cap A \neq \emptyset \). Take \(q \) an integer such that \(n^q > U \). Then for all \(m > 0 \), \(n^m n^q > U \) and \((1/n^m n^q)x \cap A \neq \emptyset \). Now for any positive integers \(a \) and \(c \),

\[
(1/a) \left[(1/c)x \right] = (1/a) \left\{ y \in G : cy = x \right\} = \{ z \in G : az = y \text{ and } cy = x \text{ for some } y \in G \}
\]

\[
= \{ z \in G : acz = x \} = (1/ac)x.
\]

Hence \((1/n^m)((1/n^q)x) \cap A \neq \emptyset \) for all \(m > 0 \). This and the fact that \(G \) is uniquely \(n^q \)-th-rooted put \((1/n^q)x \) in \(n^m A \), for all \(m > 0 \), and thus in \(K \). So \(x \) is in \(n^q \mathcal{K} \subseteq \mathcal{L} \), and \(W_1 \subseteq \mathcal{L} \).

I want to show that \((n^m \mathcal{K})_{v=0}^{\infty} \) is an ordered chain of subsets, that is, \(n^v \mathcal{K} \subseteq n^{v+1} \mathcal{K} \) for any positive integer \(v \). If \(x \) is in \(n^v \mathcal{K} \), then \((1/n^v)x \) is in \(K \) and \((1/n^v)x \) is in \(n^m A \) for all \(m > 0 \). Hence, \((1/n^v)x \) is an element of \(n(n^m A) = n^{m+1} A \) for all \(m > 0 \), and taking \(n \)-th-roots, \((1/n)((1/n^v)x) \) is an element of \(n^m A \) for all \(m > 0 \). So \((1/n^{v+1})x \) is in \(\bigcap_{m=0}^{\infty} n^m A = K \) and \(x \) in \(n^{v+1} \mathcal{K} \), making \(n^v \mathcal{K} \subseteq n^{v+1} \mathcal{K} \).

The fact that \(n^v \mathcal{K} \subseteq n^{v+1} \mathcal{K} \) for all \(v > 0 \) means that

\[
\mu_2 \left(\bigcup_{v=0}^{\infty} n^v \mathcal{K} \right) = \lim_{v \to \infty} \mu_2(n^v \mathcal{K}),
\]

which is less than \(\mu_2(K) \) by Lemma 2. Combining this with the facts that \(W_1 \subseteq \mathcal{L} \), \(\mathcal{K} \subseteq \mathcal{L} \), and \(A \supseteq \mathcal{K} \), gives \(\omega_2(W_1) \leq \mu_2(L) = \mu_2(K) \leq \mu_2(A) \), the required result.

There are three corollaries from this result, the second two of which form the basis of further work in this field (see [5]). The definition stated below arises from a generalization of the condition Hawley was interested in for the reals, and is used in Corollary 6.

Corollary 4. Let \(G, \mathcal{A}_1 \), and \(\mathcal{A}_2 \) be as in Theorem 3, except that for the second topology \(c_n < 1 \). Then \(W_1 \) is \(\mathcal{A}_2 \)-negligible if there is an \(\mathcal{A}_2 \)-Borel set with finite \(\mathcal{A}_2 \)-measure and having a nonvoid \(\mathcal{A}_1 \)-interior.

Corollary 5. Let \(G \) be a da, uniquely nth-rooted, nondiscrete topological group for some integer \(n > 2 \), and which is locally compact, \(\sigma \)-compact and has \(c_n < 1 \). Then the subgroup of continuous points in \(G \) is negligible.
Proof. Putting \(\mathcal{A}_1 = \mathcal{A}_2 \) in Theorem 3 implies that every open set has measure at least the outer measure of the subgroup of continuous points. But by regularity, since a point has zero measure, there are sets open in \(G \) with arbitrarily small measures.

Definition. Suppose there are two topologies \(\mathcal{A}_1 \) and \(\mathcal{A}_2 \) defined on some space \(X \). Then \(\mathcal{A}_2 \) is Hawley with respect to \(\mathcal{A}_1 \) if, given any \(\mathcal{A}_2 \)-Borel set, either it or its complement is dense in \((X, \mathcal{A}_1)\).

Corollary 6. Let \(G \) be a da, uniquely nth-rooted group for some integer \(n \geq 2 \). Suppose there are two group topologies \(\mathcal{A}_1 \) and \(\mathcal{A}_2 \) defined on \(G \), and \(\mathcal{A}_2 \) causes \(G \) to be compact. Then \(\mathcal{A}_2 \) is Hawley with respect to \(\mathcal{A}_1 \) if the subgroup of \(\mathcal{A}_1 \)-continuous points is not \(\mathcal{A}_2 \)-negligible.

Proof. In any compact and connected group, a nonnegligible subgroup has outer measure 1. Now by applying Theorem 3 with \(c_n = 1 \) to our present group, it can be seen that every \(\mathcal{A}_2 \)-Borel set with nonvoid \(\mathcal{A}_1 \)-interior must have \(\mathcal{A}_2 \)-measure 1. Thus the \(\mathcal{A}_2 \)-measure of \(G \) is two times what it should be if an \(\mathcal{A}_2 \)-Borel set and its complement are both not dense in \((G, \mathcal{A}_1)\).

If \(\mathcal{A}_2 \) is Hawley with respect to \(\mathcal{A}_1 \) for two topologies \(\mathcal{A}_1 \) and \(\mathcal{A}_2 \) on some space \(X \), then the only functions from \(X \) to a Hausdorff space both \(\mathcal{A}_1 \)-continuous and \(\mathcal{A}_2 \)-Borel-measurable are the constant functions. This can be proved in exactly the same way as Theorem 4 in [4]. However, it is not possible to remove the “\(\mathcal{A}_1 \)-continuous” and make it “\(\mathcal{A}_1 \)-Borel-measurable”, for if \((X, \mathcal{A}_1)\) and \((X, \mathcal{A}_2)\) are Hausdorff spaces and \(X \) contains two distinct points \(x \) and \(y \), the map \(f: X \to \{x, y\} \) defined by \(f(x) = x \) and \(f(z) = y \) if \(z \) is in \(\{x\}' \), is \(\mathcal{A}_1 \)- and \(\mathcal{A}_2 \)-Borel-measurable, but is not a constant function.

References

5. ______., Continuous points in topological groups (submitted).

Department of Mathematics, La Trobe University, Melbourne, Australia

Current address: Episcopal Divinity School, Cambridge, Massachusetts 02138