A note on the continuity of local times
HTML articles powered by AMS MathViewer
- by Donald Geman
- Proc. Amer. Math. Soc. 57 (1976), 321-326
- DOI: https://doi.org/10.1090/S0002-9939-1976-0420812-4
- PDF | Request permission
Abstract:
Several conditions are given for a stochastic process $X(t)$ on $[0,1]$ to have a local time which is continuous in its time parameter (for example, in the Gaussian case, the integrability of ${[E{(X(t) - X(s))^2}]^{ - 1/2}}$ over the unit square). Furthermore, for any Borel function $F$ on $[0,1]$ with a continuous local time, the approximate limit of $|F(s) - F(t)|/|s - t|$ as $s \to t$ is infinite for a.e. $t \in [0,1]$ and $s|F(s) = F(t)$ is uncountable for a.e. $t \in [0,1]$.References
- Simeon M. Berman, Local times and sample function properties of stationary Gaussian processes, Trans. Amer. Math. Soc. 137 (1969), 277–299. MR 239652, DOI 10.1090/S0002-9947-1969-0239652-5
- Simeon M. Berman, Harmonic analysis of local times and sample functions of Gaussian processes, Trans. Amer. Math. Soc. 143 (1969), 269–281. MR 248905, DOI 10.1090/S0002-9947-1969-0248905-6
- Simeon M. Berman, Gaussian processes with stationary increments: Local times and sample function properties, Ann. Math. Statist. 41 (1970), 1260–1272. MR 272035, DOI 10.1214/aoms/1177696901
- Donald Geman and Joseph Horowitz, Local times and supermartingales, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 29 (1974), 273–293. MR 359021, DOI 10.1007/BF00532713
- Steven Orey, Gaussian sample functions and the Hausdorff dimension of level crossings, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 15 (1970), 249–256. MR 279882, DOI 10.1007/BF00534922
- Stanisław Saks, Theory of the integral, Second revised edition, Dover Publications, Inc., New York, 1964. English translation by L. C. Young; With two additional notes by Stefan Banach. MR 0167578
Bibliographic Information
- © Copyright 1976 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 57 (1976), 321-326
- MSC: Primary 60G17; Secondary 60G15
- DOI: https://doi.org/10.1090/S0002-9939-1976-0420812-4
- MathSciNet review: 0420812