A NOTE ON THE CONTINUITY OF LOCAL TIMES

DONALD GEMAN

Abstract. Several conditions are given for a stochastic process \(X(t) \) on \([0, 1]\) to have a local time which is continuous in its time parameter (for example, in the Gaussian case, the integrability of \(\int_0^1 \left(\mathbb{E}(X(t) - X(s))^2 \right)^{1/2} \, ds \) over the unit square). Furthermore, for any Borel function \(F \) on \([0, 1]\) with a continuous local time, the approximate limit of \(\frac{|F(s) - F(t)|}{|s - t|} \) as \(s \to t \) is infinite for a.e. \(t \in [0, 1] \) and \(\{ s | F(s) = F(t) \} \) is uncountable for a.e. \(t \in [0, 1] \).

1. For a real, Borel function \(F(t) \), \(0 < t < 1 \), put
\[
m_t(B) = m(F^{-1}(B) \cap [0, t]), \quad B \in \mathcal{B},
\]
where \(m(dx) \) (or just \(dx \)) is Lebesgue measure on the real Borel \(\sigma \)-field \(\mathcal{B} \). If \(m_t \) is absolutely continuous with respect to \(m \), we call \(\alpha_t(x) = \frac{d m_t(x)}{dm} \), \(0 < t < 1, -\infty < x < \infty \), the local time of \(F \). Local times are assumed to be chosen jointly measurable and nondecreasing, right-continuous in \(t \) for every \(x \); such versions always exist. The measure corresponding to \(\alpha_t(x) \) is then denoted \(\alpha(dt, x) \) and represents the “time spent” by \(F \) in the level \(x \) during \(dt \).

Let \(X(t, w), 0 \leq t \leq 1, \) be a separable and measurable stochastic process over a probability space \((\Omega, \mathcal{F}, P)\). In the Gaussian case, mean 0, Berman [1] showed that if
\[
\int_0^1 \int_0^1 \frac{dsdt}{[E(X(s) - X(t))^2]^{1/2}} < \infty,
\]
then almost every sample path \(X(\cdot, w) \) has a local time, say \(\alpha_t(x, w) \), and then, in a series of papers, gave various additional conditions for a version of \(\alpha_t(x, w) \) to be jointly continuous in \((t, x)\) a.s. (for example, in the stationary increments case, (1) with the exponent 1/2 replaced by \(1 + \epsilon \) for some \(\epsilon > 0 \); see [3]). Berman [3] also observed that for any Borel function \(F \), the joint continuity of its local time implies
\[
\text{ap lim}_{s \to t} \left| \frac{F(s) - F(t)}{s - t} \right| = +\infty
\]
for every \(t \in (0, 1) \) (where “ap lim” stands for approximate limit—see [6, p.

Received by the editors July 11, 1975.

1 This work was partially supported by NSF Grant MPS72-04813 A03.
and in [2] proved that if (1) holds, and $X(t, w)$ is continuous, then, with probability one, \(\{ s \in [0, 1] \mid X(s, w) = X(t, w) \} \) is infinite for a.e. $t \in [0, 1]$.

In this note we will prove:

Theorem A. Suppose F has a local time $\alpha_t(x)$ which is continuous in t for a.e. x. Then
\begin{enumerate}[(a)]

 \item \(\text{ap lim}_{s \to t} \frac{|F(s) - F(t)|}{s - t} = +\infty \) for a.e. $t \in [0, 1]$,

 \item $L_t = \{ s \in [0, 1] \mid F(s) = F(t) \}$ is uncountable for a.e. $t \in [0, 1]$.
\end{enumerate}

Theorem B. Let $X(t, w)$ be a stochastic process for which either
\begin{equation}
(1) \quad \int_0^1 \sup_{\epsilon > 0} \frac{1}{\epsilon} P(|X(s) - X(t)| < \epsilon) \, ds < \infty \quad \text{for a.e. } t \in [0, 1],
\end{equation}
or
\begin{equation}
(II) \quad \text{For each } 0 < s < 1, \text{ the distribution of } X(s) \text{ is absolutely continuous; for each } 0 < s, t < 1, \text{ the (joint) distribution of } (X(s), X(t)) \text{ is absolutely continuous on an open strip } B \text{ (independent of } s, t \text{) containing the diagonal } x = y, \text{ and the density } g_{s,t}(x,y) \text{ on } B \text{ is continuous on the diagonal and satisfies}
\end{equation}
\begin{equation}
(3) \quad \int_0^1 \int_0^1 \sup_{x,y \in B} g_{s,t}(x,y) \, ds \, dt < \infty.
\end{equation}

Then, with probability one, $X(t, w)$ has a local time $\alpha_t(x, w)$ which is continuous in t for a.e. x.

In the Gaussian case, (I) becomes
\begin{equation}
(4) \quad \int_0^1 \frac{ds}{[E(X(t) - X(s))^2]^{1/2}} < \infty \quad \text{for a.e. } t \in [0, 1],
\end{equation}
which is implied by (1). (However, the conclusions inferred from (1) can also be inferred from (4) by restricting $X(t, w)$ to a sequence $E_n \subset [0, 1]$ with
\begin{equation}
m([0, 1] \setminus \bigcup_n E_n) = 0
\end{equation}
and $[E(X(t) - X(s))^2]^{-1/2}$ integrable over each $E_n \times E_n$.) Condition (4) (or (1)), is weaker than the known sufficient conditions for the joint continuity of α. Still in the Gaussian case (mean 0), (II) reduces to
\begin{equation}
(5) \quad \int_0^1 \int_0^1 \frac{ds \, dt}{[(EX^2(t))(EX^2(s)) - (EX(t)X(s))^2]^{1/2}} < \infty,
\end{equation}
which was assumed in [5] for the existence of α. For a continuous covariance, (5) implies (1), but not conversely, as seen by the process $W(t^2, w)$, W being ordinary Brownian motion. Nonetheless, if $X(t, w)$ satisfies (1), then the process $X(t, w) + \xi(w)$, where ξ is standard normal and independent of X, has the same local time properties as X and satisfies both (1) and (5). In the stationary case, (1), (4), and (5) are equivalent, and are implied by
\[\int_0^1 \frac{ds}{\sigma(s)} < \infty, \quad \sigma^2(s) = E[X(s) - E(X(s)|X(u), u \leq 0)]^2, \]

which was assumed in [4] to get the continuity (in \(t \)) of \(\alpha \).

The meaning of part (a) of Theorem A is this: almost every \(t \in (0, 1) \) is a point of dispersion for the time spent by \(F \) in every cone with vertex at \((t, F(t))\) and axis parallel to the abscissa. In particular, almost every \(t \in (0, 1) \) is an approximate "knot-point" (a term due to G. C. Young) of \(F \), i.e. both approximate upper Dini derivatives are \(+\infty\) and both lower ones are \(-\infty\) (and hence likewise for the ordinary derivatives). (This follows from the Denjoy-Khintchine theorem [6, p. 295].) It is noteworthy that for any Borel function \(F \), the set of points \(t \) at which \(\lim_{s \to t} |F(s) - F(t)|/|t - s| = +\infty \) is of measure zero [6, p. 270]. This of course is false if \(\lim \) is replaced by ap \(\lim \): "this rather unexpected fact was brought to light by V. Jarnik, who showed that there exist continuous functions \(F \) for which the relation

\[\text{ap \(\lim_{h \to 0^+} \frac{|F(x + h) - F(x)|}{h} = +\infty \) holds at almost all points \(x \)" [6, p. 297].

2. For brevity, the verification of the measurability of various sets and functions will be left aside.

PROOF OF THEOREM A. (a) For each \(0 < t < 1 \) and \(M > 0 \), set

\[D_{t,M} = \{ s \in [0, 1] | |F(s) - F(t)| \leq M|t - s| \}, \quad \text{and} \]

\[\tau(t, M) = \lim_{\epsilon \to 0} \frac{1}{2\epsilon} m(D_{t,M} \cap (t - \epsilon, t + \epsilon)). \]

By definition, (2) holds at \(t \) whenever \(\tau(t, M) = 0 \) for every \(M > 0 \).

It follows from the definition of \(\alpha \) and a monotone class argument that

\[\int_0^1 f(s, F(s)) ds = \int_{-\infty}^\infty \int_0^1 f(s, x) \alpha(ds, x) dx \]

for every measurable \(f \geq 0 \). In particular, for every \(0 \leq s < t \leq 1 \) there is a full set \(E_{s,t} \), i.e. \(m(E_{s,t}^C) = 0 \), such that

\[\lim_{\epsilon \to 0} \frac{1}{2\epsilon} (\mu_{t}[x - \epsilon, x + \epsilon] - \mu_{\epsilon}[x - \epsilon, x + \epsilon]) = \alpha((s,t),x) \quad \text{for all} \ x \in E_{s,t}. \]

Let \(\mathcal{K} \) denote the collection of open intervals in \([0,1]\) with rational endpoints. Since \(\mathcal{K} \) is countable,

\[\lim_{\epsilon \to 0} \frac{1}{2\epsilon} \int_B \mathbb{1}_{[0,\epsilon]}(|F(s) - x|) ds = \alpha(B, x) \quad \forall B \in \mathcal{K}, \]

for all \(x \) in a full set \(E \). Now (7) remains valid with \(x \) replaced by \(F(t) \) for all \(t \in G \equiv F^{-1}(E^c) \), which is full since \(m(E^c) = 0 \) implies \(m(F^{-1}(E^c)) = 0 \).

Now fix \(B \in \mathcal{K}, \ t \in B \cap G, \) and \(M > 0 \).
\[\alpha(B, F(t)) \geq \lim_{\epsilon \to 0} \frac{1}{2\epsilon} \int_{B \cap D_{t,M}} I_{[0, \epsilon]}(|F(s) - F(t)|) \, ds\]

\[\geq \lim_{\epsilon \to 0} \frac{1}{2\epsilon} \int_{B \cap D_{t,M}} I_{[0, \epsilon]}(M|t - s|) \, ds\]

\[= \lim_{\epsilon \to 0} \frac{1}{M} \left[\frac{1}{2\epsilon} m(B \cap D_{t,M} \cap (t - \epsilon, t + \epsilon)) \right]\]

\[= \tau(t, M)/M.\]

Letting \(B \downarrow \{t\} \), we find that

\[\sup_{M > 0} \frac{\tau(t, M)}{M} \leq \alpha({t}, F(t)), \quad t \in G,\]

where \(\alpha({t}, x) \) is the mass placed on \(\{t\} \) by \(\alpha(ds, x) \).

Finally, let \(D = (x: \alpha([s], x) = 0 \, \forall s) \): by assumption, \(m(D^c) = 0 \), and hence \(m(F^{-1}(D^c)) = 0 \), i.e. \(\alpha([s], F(t)) = 0 \, \forall s \) for a.e. \(t \in [0, 1] \). In particular, \(\alpha([t], F(t)) = 0 \) a.e.

(b) Having already noticed that the measure \(\alpha(ds, F(t)) \) is continuous for a.e. \(t \), we need only check that (i) \(\alpha_1(F(t)) > 0 \) a.e. and (ii) \(\alpha(L_{t},F(t)) = 0 \) a.e.

As for (i), for any \(B \in \mathfrak{B}, B \subset [0, 1], \)

\[\int_B \alpha_1(F(s)) \, ds = \int_{-\infty}^{\infty} \alpha_1(x) \alpha(B, x) \, dx \geq \int_{-\infty}^{\infty} a^2(B, x) \, dx,\]

which is positive whenever \(m(B) > 0 \). (The assumption in [2, Lemma 1.1] that \(\alpha \) be square integrable is extraneous.) To obtain (ii), let \(M_x = \{s \in [0, 1] | F(s) = x\} \) so that \(L_t = M_{F(t)} \). From (6),

\[0 = \int_0^1 L_{t}^1 (t) \, dt = \int_{-\infty}^{\infty} \alpha(M_x^c, x) \, dx,\]

in which case \(\alpha(M_x^c, x) = 0 \) a.e., and in turn \(\alpha(L_{t},F(t)) = 0 \) for a.e. \(t \in [0, 1] \).

Proof of Theorem B. Assumption (I) implies

\[\lim_{\epsilon \to 0} \frac{1}{2\epsilon} \int_0^1 I_{[0, \epsilon]}(|X(s) - X(t)|) \, ds < \infty \quad \text{for a.e.} \quad t \in [0, 1],\]

for almost every \(w \in \Omega \) (by taking the expected value of the random variable in (9) and using Fatou's lemma). However, for any Borel function \(F(t) \) on \([0, 1], (9)-with X replaced by F-is necessary and sufficient for a local time. To see this, let \(G(x) = m(F^{-1}(-\infty, x] \cap [0, 1]) \); it is a standard fact about the differentiation of measures that \(G'(x) \) exists, finite or infinite, for a.e. \(x(dG) \), and that \(G \) is absolutely continuous if and only if \(G'(x) < \infty \) a.e. (dG). In other words,

\[\lim_{\epsilon \to 0} \frac{1}{2\epsilon} \int_0^1 I_{[0, \epsilon]}(|F(s) - F(t)|) \, ds \]

exists (possibly at \(+\infty \)) for a.e. \(t \in [0, 1] \), and \(F \) has a local time if and only if
the limit is actually finite for a.e. \(t \in [0,1] \).

Next, proceeding as in the proof of Theorem A, we have

\[
\alpha(B, X(t, w), w) = \lim_{\varepsilon \downarrow 0} \frac{1}{2\varepsilon} \int_B \int_{[0,\varepsilon]} |X(s, w) - X(t, w)| \, ds, \quad \forall B \in \mathcal{H},
\]

for a.e. \(t \in [0,1] \), all with probability one. Taking expected values and applying Fatou's lemma yields

\[
E\alpha(B, X(t)) \leq \int_B \sup_{\varepsilon > 0} \frac{1}{\varepsilon} P(|X(t) - X(s)| \leq \varepsilon) \, ds, \quad \forall B \in \mathcal{H},
\]

for a.e. \(t \in [0,1] \), and for such \(t \)'s we can choose a sequence from \(\mathcal{H} \) which decreases to \(\{t\} \) and conclude that \(E\alpha(\{t\}, X(t, w), w) = 0 \). Consequently with probability one,

\[
0 = \int_0^1 \alpha(\{t\}, X(t, w), w) \, dt = \int_{-\infty}^\infty \int_0^1 \alpha(\{t\}, x, w) \alpha(dt, x, w) \, dx
\]

where the second equality uses \((6) \).

Under condition (II), the existence of \(\alpha \) results from an easy modification of the proof of Theorem 2 of [5]. As for continuity, let \(\phi(\lambda; x, w) \) be the Fourier transform of the (finite) measure \(\alpha(dt, x, w) \):

\[
\phi(\lambda; x, w) \triangleq \int e^{i\lambda s} \alpha(dt, x, w), \quad -\infty < \lambda, x < +\infty, \ w \in \Omega.
\]

As is well known,

\[
\lim_{T \to \infty} \frac{1}{T} \int_0^T |\phi(\lambda; x, w)|^2 \, d\lambda = \sum_{t \in [0,1]} \alpha^2(\{t\}, x, w).
\]

We will show that the expected value of the left-hand side of \((10) \) is zero for a.e. \(x \).

From \((6) \), for almost every \(w \),

\[
\int_0^1 e^{i\lambda s} \int_{[0,\varepsilon]} (X(s, w) - x) \, ds = \int_x^{x+\varepsilon} \phi(\lambda; y, w) \, dy, \quad \forall \lambda, x.
\]

Let \(eZ_\varepsilon(\lambda; x, w) \) denote the left-hand side of \((11) \). Almost surely, then, for every \(\lambda \),

\[
\lim_{\varepsilon \downarrow 0} Z_\varepsilon(\lambda; x, w) = \phi(\lambda; x, w)
\]

for a.e. \(x \). Using Fubini's theorem we obtain set \(\Delta \in \mathcal{B}, m(\Delta^c) = 0 \), such that for every \(x \in \Delta \), \((12) \) holds for \((m \times P) \)-a.e. pair \((\lambda, w) \). For such \(x \)'s,
\[
E \lim_{T \to \infty} \frac{1}{T} \int_0^T |\phi(\lambda; x, w)|^2 d\lambda \leq \lim_{T \to \infty} \frac{1}{T} \int_0^T |\phi(\lambda; x, w)|^2 d\lambda
\]
\[
= \lim_{T \to \infty} \frac{1}{T} \int_0^T E|\phi(\lambda; x, w)|^2 d\lambda
\]
\[
= \lim_{T \to \infty} \frac{1}{T} \int_0^T E \lim_{\epsilon \to 0} |Z_\epsilon(\lambda; x, w)|^2 d\lambda
\]
\[
\leq \lim_{T \to \infty} \frac{1}{T} \int_0^T \lim_{\epsilon \to 0} E|Z_\epsilon(\lambda; x, w)|^2 d\lambda.
\]

Finally, by dominated convergence and the continuity of \(g_{s,t} \) at \((x, x)\),
\[
\lim_{\epsilon \to 0} E|Z_\epsilon(\lambda; x, w)|^2 = \lim_{\epsilon \to 0} \frac{1}{\epsilon^2} \int_0^1 \int_0^1 \int_x^{x+\epsilon} \int_x^{x+\epsilon} e^{i\lambda(s-t)} g_{s,t}(u, v) du dv ds dt
\]
\[
= \int_0^1 \int_0^1 e^{i\lambda(s-t)} g_{s,t}(x, x) ds dt
\]
\[
= \int_0^1 e^{i\lambda s} G(s; x) ds,
\]
where \(G(s; x) = \int_0^1 I_{[0,1]}(s+t) g_{s,t}(x, x) dt \) is nonnegative and integrable \((ds)\) over \((-\infty, \infty)\). Hence
\[
\lim_{T \to \infty} \frac{1}{T} \int_0^T \int_0^\infty e^{i\lambda s} G(s; x) ds d\lambda = 0 \quad \text{for every } x,
\]
which concludes the proof.

Remark. For a Gaussian process satisfying (1), we have \(E\alpha(1, x) > 0 \) for a.e. \(x \). Consequently, the proof of part (b) shows that, for almost every \(x \), \(M_x(w) = \{t \in [0,1] | X(t, w) = x) \) is uncountable with positive probability. Under further restrictions, Berman [3], Orey [5], and others have computed the a.s. Hausdorff dimension of \(M_x(w) \).

References