Tauberian operators on Banach spaces
HTML articles powered by AMS MathViewer
- by Nigel Kalton and Albert Wilansky
- Proc. Amer. Math. Soc. 57 (1976), 251-255
- DOI: https://doi.org/10.1090/S0002-9939-1976-0473896-1
- PDF | Request permission
Abstract:
A Tauberian operator: $E \to F$ (Banach spaces) is one which satisfies $T''g \in F,g \in E''$ imply $g \in E$. The action of such operators and their pre-images on compact sets is studied in order to compare “Tauberian” with “weakly compact", an opposite property. Properties related to range closed are introduced which force operators with Tauberian-like properties to be Tauberian. Classes of spaces appear for which Tauberian is equivalent to semi-Fredholm. One example of this is the historical reason for the definition of these operators.References
- William G. Bade and Philip C. Curtis Jr., Embedding theorems for commutative Banach algebras, Pacific J. Math. 18 (1966), 391–409. MR 202001
- C. Bessaga and A. Pełczyński, On bases and unconditional convergence of series in Banach spaces, Studia Math. 17 (1958), 151–164. MR 115069, DOI 10.4064/sm-17-2-151-164
- W. J. Davis, T. Figiel, W. B. Johnson, and A. Pełczyński, Factoring weakly compact operators, J. Functional Analysis 17 (1974), 311–327. MR 0355536, DOI 10.1016/0022-1236(74)90044-5 R. de Vos, $\theta$ maps between FK spaces, Math Z. 129 (1975), 287-298.
- D. J. H. Garling and A. Wilansky, On a summability theorem of Berg, Crawford and Whitley, Proc. Cambridge Philos. Soc. 71 (1972), 495–497. MR 294946, DOI 10.1017/s0305004100050775
- Arnold Lebow and Martin Schechter, Semigroups of operators and measures of noncompactness, J. Functional Analysis 7 (1971), 1–26. MR 0273422, DOI 10.1016/0022-1236(71)90041-3
- Haskell P. Rosenthal, A characterization of Banach spaces containing $l^{1}$, Proc. Nat. Acad. Sci. U.S.A. 71 (1974), 2411–2413. MR 358307, DOI 10.1073/pnas.71.6.2411
- Martin Schechter, Principles of functional analysis, Academic Press, New York-London, 1971. MR 0445263
- Albert Wilansky, Semi-Fredholm maps of FK spaces, Math. Z. 144 (1975), no. 1, 9–12. MR 405155, DOI 10.1007/BF01214402
- Kung Wei Yang, The generalized Fredholm operators, Trans. Amer. Math. Soc. 216 (1976), 313–326. MR 423114, DOI 10.1090/S0002-9947-1976-0423114-X
Bibliographic Information
- © Copyright 1976 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 57 (1976), 251-255
- MSC: Primary 47B05; Secondary 47B30
- DOI: https://doi.org/10.1090/S0002-9939-1976-0473896-1
- MathSciNet review: 0473896