The first Whitehead lemma for Malcev algebras
HTML articles powered by AMS MathViewer
- by Renate Carlsson
- Proc. Amer. Math. Soc. 58 (1976), 79-84
- DOI: https://doi.org/10.1090/S0002-9939-1976-0409585-9
- PDF | Request permission
Abstract:
In the present paper the first Whitehead lemma for separable Malcev algebras is proved, the dimensions being finite and the characteristic of the base field necessarily equal to zero. A consequence is the theorem of Malcev-Harish-Chandra for Malcev algebras. To get the lemma a structure theorem for modules over semisimple split Malcev algebras is proved.References
- Renate Carlsson, Malcev-Moduln, J. Reine Angew. Math. 281 (1976), 199–210 (German). MR 393158, DOI 10.1515/crll.1976.281.199
- Nathan Jacobson, Lie algebras, Interscience Tracts in Pure and Applied Mathematics, No. 10, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York-London, 1962. MR 0143793
- E. N. Kuz′min, Mal′cev algebras and their representations, Algebra i Logika 7 (1968), no. 4, 48–69 (Russian). MR 0252468
- E. N. Kuz′min, A locally nilpotent radical of Mal′cev algebras satisfying the $n\textrm {th}$ Engel condition, Dokl. Akad. Nauk SSSR 177 (1967), 508–510 (Russian). MR 0219581
- Arthur A. Sagle, Malcev algebras, Trans. Amer. Math. Soc. 101 (1961), 426–458. MR 143791, DOI 10.1090/S0002-9947-1961-0143791-X
- Earl Jay Taft, The Whitehead first lemma for alternative algebras, Proc. Amer. Math. Soc. 8 (1957), 950–956. MR 89842, DOI 10.1090/S0002-9939-1957-0089842-7
Bibliographic Information
- © Copyright 1976 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 58 (1976), 79-84
- MSC: Primary 17E05
- DOI: https://doi.org/10.1090/S0002-9939-1976-0409585-9
- MathSciNet review: 0409585