LIE *-TRIPLE HOMOMORPHISMS INTO VON NEUMANN ALGEBRAS

C. ROBERT MIERS

Abstract. Let M and N be associative *-algebras. A Lie *-triple homomorphism of M into N is a *-linear map $\phi: M \to N$ such that

$$\phi[[A, B], C] = [[\phi(A), \phi(B)], \phi(C)].$$

(Here M and N are considered as Lie *-algebras with $[X, Y] = XY - YX$.)

In this note we prove that if N is a von Neumann algebra with no central abelian projections and if ϕ is onto, there exists a central projection D in N such that $D\phi$ is a Lie *-homomorphism of $[M, M]$, and $(I - D)\phi$ is a Lie *-antihomomorphism of $[M, M]$.

1. Introduction. An associative algebra M can be turned into a Lie algebra by defining a new multiplication $[X, Y] = XY - YX$ where XY is the associative product of X and Y. Every abstract Lie algebra is isomorphic to a subalgebra of a Lie algebra formed in this way. A Lie triple system is a subspace of M closed under the Lie triple product $[[A, B], C]$. Lie triple systems and their homomorphisms have been studied in relation to Jordan homomorphisms of rings and the following theorem proved [2, Theorem 15]:

Let ϕ be a Lie triple system homomorphism of the special Lie ring L and denote by M the enveloping Lie ring of $\phi(L)$ and Z the centre of M. Assume (i) M/Z has no commutative Lie ideals and (ii) any two nonzero Lie ideals in M/Z have nonzero intersection. Then ϕ, when restricted to the Lie ring $[L, L]$, is either a Lie homomorphism or antihomomorphism.

We wish to prove an analogous theorem when the image algebra is a von Neumann algebra. The situation is complicated by the presence, in the general case, of nonzero central projections which makes (ii) of the above theorem inapplicable.

2. Notation and preliminaries. M is a *-algebra over the complex field and M_0, M_1 subsets of M, then $[M_0, M_1] = \{[A, B] : A \in M_0, B \in M_1\}$ is all finite linear combinations of elements of the form $[A, B]$ with $A \in M_0, B \in M_1$. A Lie *-triple homomorphism $\phi: M \to N$ is a *-linear map preserving the Lie triple product $[[A, B], C]$. The enveloping Lie algebra [2, p. 493] of $\phi(M)$ is the set $\phi(M) + [\phi(M), \phi(M)]$. A Lie *-ideal of M is a *-linear subspace $U \subseteq M$ such that if $Y \in U$, $[X, Y] \in U$ for all $X \in M$.

A von Neumann algebra M is a weakly closed, selfadjoint algebra of operators on a complex Hilbert space H containing the identity operator I. The set $Z_M = \{S \in M : [S, T] = 0 \text{ for all } T \in M\}$ is called the centre of M.

Received by the editors September 30, 1975.

AMS (MOS) subject classifications (1970). Primary 46L10; Secondary 16A68.

Key words and phrases. Lie *-triple homomorphism, von Neumann algebra.

© American Mathematical Society 1976

169
If P is a projection (= selfadjoint idempotent) in M, then $M_P = \{PAP | A \in M\}$. A projection P is abelian if M_P is an abelian algebra. We use [1] as a general reference for the theory of von Neumann algebras.

The following fact will be used several times in what follows: If M is a C*-algebra, $X, Y \in M$ with $Y = Y^*$, then $[X, Y] \in Z_M$ implies $[X, Y] = 0$ [2, Lemma 6]. This implies, for example, that if M_0 and M_1 are subsets of M with M_1 a *-subspace, then $[M_0, M_1] \subseteq Z_M$ implies $[M_0, M_1] = \{0\}$.

3. Lie *-triple homomorphisms. Let $\phi : M \to N$ be a Lie *-triple homomorphism where M is a *-algebra over C and N is a von Neumann algebra. The case where N is a factor (that is $Z_N = \{\lambda I : \lambda \in C\}$) is included separately, even though the factor case fits into the general theorem, since ϕ can be analyzed when N is a factor by using the Jacobson-Rickart theorem already mentioned. The following result may be of independent interest.

Lemma 1. Let N be a C*-algebra. Then N/Z_N, considered as a Lie *-algebra, contains no nontrivial abelian Lie *-ideals.

Proof. Let N_0 be an abelian Lie *-ideal in N/Z_N and let $\pi : N \to N/Z_N$ be the canonical Lie *-homomorphism where $\pi(A) = A + Z_N$. N_0 is generated, as a *-linear space, by selfadjoint elements so let $A + Z_N, B + Z_N$ be elements of N_0 with $A - A^* \in Z_N$ and $B - B^* \in Z_N$. Then $\pi([A, B]) = [\pi(A), \pi(B)] = 0$ since N_0 is abelian. Thus $[A, B] \in \ker \pi = Z_N$. Now $A - A^* \in Z_N$ implies $[A^*, B] = [A, B] \in Z_N$ so that $[A + A^*, B] \in Z_N$. This forces $[A + A^*, B] = 0$. Similarly $[A - A^*, B] = 0$. Adding, we have $[A, B] = 0$. $\pi^{-1}(N_0) + Z_N$ is therefore an abelian Lie *-ideal in N so that by [3, Lemma 36], $\pi^{-1}(N_0) \subseteq Z_N$ or $N_0 = \{0\}$.

Theorem. If N is a factor and $\phi : M \to N$ is a Lie *-triple homomorphism of M onto N then $\phi([M, M])$ is a Lie *-homomorphism or a Lie *-antihomomorphism.

Proof. Since ϕ is onto, $\phi(M) + [\phi(M), \phi(M)] = N$ so that we need only show condition (ii) of the Jacobson-Rickart theorem is fulfilled. Let U_1 and U_2 be nonzero Lie *-ideals in N/Z_N and let $V_1 = \pi^{-1}(U_1)$, $V_2 = \pi^{-1}(U_2)$. Then $V_1 + Z_N, V_2 + Z_N$ are Lie *-ideals in N and neither is contained in Z_N.

By [3, Lemma 37] there exist nonzero two-sided ideals $\mathcal{J}_1, \mathcal{J}_2$ of N such that $[\mathcal{J}_1, N] \subseteq V_1 + Z_N$ and $[\mathcal{J}_2, N] \subseteq V_2 + Z_N$. If $[\mathcal{J}_1, N] \subseteq Z_N$ then $[\mathcal{J}_1, N] = 0$ and $\mathcal{J}_1 \subseteq Z_N = \{\lambda I : \lambda \in C\}$ which would force $\mathcal{J}_1 = \{0\}$. If $\mathcal{J}_1 = N$ then

$$[\mathcal{J}_1, N] \cap [\mathcal{J}_2, N] = [\mathcal{J}_2, N] \subseteq (V_1 + Z_N) \cap (V_2 + Z_N)$$

so that $U_1 \cap U_2 \neq \{0\}$.

So we can assume $U_1 \cap U_2 = \{0\}$ and $\mathcal{J}_1, \mathcal{J}_2$ are nonzero, proper ideals in N. Now

$$\pi^{-1}(\{0\}) = \pi^{-1}(U_1 \cup U_2) = (V_1 + Z_N) \cap (V_2 + Z_N) \subseteq Z_N.$$

Hence $[\mathcal{J}_1, N] \cap [\mathcal{J}_2, N] \subseteq Z_N$ which implies $[\mathcal{J}_1, \mathcal{J}_2] \subseteq Z_N$. Since $V_1 + Z_N$ and $V_2 + Z_N$ are selfadjoint collections, we can assume the same of \mathcal{J}_1 and \mathcal{J}_2 so that $[\mathcal{J}_1, \mathcal{J}_2] = \{0\}$. Moreover $[\mathcal{J}_1, \mathcal{J}_2, N] \subseteq [\mathcal{J}_1, N] \cap [\mathcal{J}_2, N] \subseteq Z_N$ so that $[\mathcal{J}_1, \mathcal{J}_2, N] = \{0\}$. Hence $\mathcal{J}_1, \mathcal{J}_2$ is a selfadjoint two-sided ideal in Z_N so
that \(\mathcal{I}_1 \mathcal{I}_2 = \{0\} \) which is impossible since \(N \) is a factor.

We now turn our attention to the general case. As in [2] the sets

\[
N^+ = \left\{ \sum_{i=1}^{n} \phi[A_i, B_i] - [\phi(A_i), \phi(B_i)]: A_i, B_i \in M \right\}
\]

and

\[
N^- = \left\{ \sum_{i=1}^{n} \phi[A_i, B_i] - [\phi(B_i), \phi(A_i)]: A_i, B_i \in M \right\}
\]

are Lie ideals in \(\phi(M) + [\phi(M), \phi(M)] \). In our case \(N^+ \) and \(N^- \) are also closed under the \(*\)-operation since \(\phi \) preserves adjoints. If, for example, \(N^+ \subseteq Z_N \) then

\[
0 = [\phi[A, B] - [\phi(A), \phi(B)], \phi[X, Y]] = [\phi[A, B], \phi[X, Y]] - [\phi[A, B], [X, Y]]
\]

so that \(\phi \) is a Lie \(*\)-homomorphism of \([M, M] \). Similarly, if \(N^- \subseteq Z_N \) then \(\phi \) is a Lie \(*\)-antihomomorphism of \([M, M] \).

Lemma 2. Let \(\phi: M \to N \) be a Lie \(*\)-triple homomorphism of the \(*\)-algebra \(M \) onto a von Neumann algebra \(N \) which has no abelian central projections and suppose \(N^+ \not\subseteq Z_N \) and \(N^- \not\subseteq Z_N \). There exist projections \(C \neq 0 \) and \(D \neq 0 \) in \(Z_N \) such that \(N^+ + Z_N \subseteq N_C + Z_N \), \(N^- + Z_N \subseteq N_D + Z_N \) and \(CD = 0 \).

Proof. By [2, Theorem 14] we have \([N^+, N^-] \subseteq Z_N \) and so \([N^+, N^-] = 0 \), since \(N^+, N^- \) are selfadjoint collections. Hence \(N^+, N^- \) are commuting Lie \(*\)-ideals so that \((N^+ + Z_N)^{-\text{uw}} \) and \((N^- + Z_N)^{-\text{uw}} \) are also commuting Lie \(*\)-ideals. \((N^+ + Z_N)^{-\text{uw}} \) is the ultra-weak closure of \((N^+ + Z_N) \). By [3, Theorem 4, Corollary], \((N^+ + Z_N)^{-\text{uw}} = N_C + Z_N \), \((N^- + Z_N)^{-\text{uw}} = N_D + Z_N \) where \(C \neq 0 \), \(D \neq 0 \) are projections in \(Z_N \). Since these Lie \(*\)-ideals commute we have \([N_C, N_D] = [N_{CD}, N_{CD} = 0 \) or \(CD = 0 \) is a central abelian projection. Thus \(CD = 0 \).

Theorem 2. Let \(\phi: M \to N \) be a Lie \(*\)-triple homomorphism of a \(*\)-algebra \(M \) onto a von Neumann algebra \(N \) which has no central abelian projections. There exists a projection \(D \in Z_N \) such that \(D\phi \) is a Lie \(*\)-homomorphism on \([M, M] \) and \((I - D)\phi \) is a Lie \(*\)-antihomomorphism on \([M, M] \).

Proof. If \(N^+ \subseteq Z_N \) or \(N^- \subseteq Z_N \) then \(D = 0 \) or \(D = I \). Otherwise there exist projections \(C \neq 0 \), \(D \neq 0 \) in \(Z_N \) such that \(N^+ + Z_N \subseteq N_C + Z_N \), \(N^- + Z_N \subseteq N_D + Z_N \) and \(CD = 0 \). We have \(N^+D = \{TD \mid T \in N^+ \} \subseteq Z_ND \) and \(N^-C \subseteq Z_NC \). By the discussion before Lemma 2 we have that \(D\phi \) is a Lie \(*\)-homomorphism of \([M, M] \) and \(C\phi \) is a Lie \(*\)-antihomomorphism of \([M, M] \).

Now \(N^+(I - C - D) \subseteq Z_N(I - C - D) \) and \(N^-(I - C - D) \subseteq Z_N(I - C - D) \) so that \((I - C - D)\phi \) is both a Lie \(*\)-homomorphism and a Lie \(*\)-antihomomorphism on \([M, M] \). Thus if \(X, Y \in [M, M] \),

\[
(I - C - D)\phi[X, Y] = (I - C - D)[\phi(X), \phi(Y)] = (I - C - D)[\phi(Y), \phi(X)].
\]
This implies \((I - C - D) \phi (X) \phi (Y) = (I - C - D) \phi (Y) \phi (X)\) or that \((I - C - D) \phi [M, M]\) is abelian. \([M, M], M) \subseteq [M, M]\) so that
\[
\left[\left[\phi(M), \phi(M) \right], \phi(M) \right] \subseteq \phi[M, M].
\]
Since \(\phi\) is onto, \([N, N], N) \subseteq \phi[M, M]\) and
\[
\left[\left[N_{(I-C-D)}, N_{(I-C-D)} \right], N_{(I-C-D)} \right] \subseteq (I - C - D)\phi[M, M].
\]
Hence \([N_{(I-C-D)}, N_{(I-C-D)}, N_{(I-C-D)}] \subseteq (I - C - D)\phi[M, M].\)

Remark 1. The requirement that \(\phi\) be onto is made so that \(N^+\) and \(N^-\), which are Lie \(*\)-ideals of \(\phi(M) + [\phi(M), \phi(M)]\) will be Lie \(*\)-ideals in \(N\) where a characterization of such ideals is known. Other restrictions on \(M, N\) and \(\phi\) can be made to insure that \(\phi(M) + [\phi(M), \phi(M)] = N\). \(\phi\) is called \(L\)-onto if, given \(Y \in N\), there exists \(X \in M\) such that \(\phi(X) - Y \in Z_N\).

If \(N\) is an infinite von Neumann algebra then
\([N, N] = N [5, \text{Theorem 2}]\). Hence if \(\phi\) is \(L\)-onto and \(N\) is infinite, \([\phi(M), \phi(M)] = [N, N] = N\). If \(N\) is a type I finite von Neumann algebra then \(Z_N + [N, N] = N [4, \text{Theorem 1}]\). If in this case \(\phi\) were \(L\)-onto and \(Z_N \subseteq \phi(M)\), we would have \(N = Z_N + [N, N] \subseteq \phi(M) + [\phi(M), \phi(M)] \subseteq N\).

Remark 2. Modification of the arguments of [3] shows that if \(M\) and \(N\) are von Neumann algebras with no central abelian projections and \(\phi\) is \(L\)-onto, then \(Z_M\) and \(Z_N\) are \(*\)-isomorphic.

References

Department of Mathematics, University of Victoria, P. O. Box 1700, Victoria V8W 2Y2, Canada