A generalization of the Hahn-Mazurkiewicz theorem
HTML articles powered by AMS MathViewer
- by L. E. Ward
- Proc. Amer. Math. Soc. 58 (1976), 369-374
- DOI: https://doi.org/10.1090/S0002-9939-1976-0413063-0
- PDF | Request permission
Abstract:
It is proved that if a Hausdorff continuum $X$ can be approximated by finite trees (see the text for definition) then there exists a (generalized) arc $L$ and a continuous surjection $\varphi :L \to X$.References
- C. E. Capel, Inverse limit spaces, Duke Math. J. 21 (1954), 233–245. MR 62417
- J. L. Cornette, “Image of a Hausdorff arc” is cyclically extensible and reducible, Trans. Amer. Math. Soc. 199 (1974), 253–267. MR 375257, DOI 10.1090/S0002-9947-1974-0375257-5
- J. L. Cornette and B. Lehman, Another locally connected Hausdorff continuum not connected by ordered continua, Proc. Amer. Math. Soc. 35 (1972), 281–284. MR 307200, DOI 10.1090/S0002-9939-1972-0307200-2 H. Hahn, Mengentheoretische Charakterisierung der stetigen Kurven, Sitzungsber. Akad. Wiss. Wien 123 (1914), 2433-2489.
- John G. Hocking and Gail S. Young, Topology, Addison-Wesley Publishing Co., Inc., Reading, Mass.-London, 1961. MR 0125557
- Sibe Mardešić, On the Hahn-Mazurkiewicz theorem in nonmetric spaces, Proc. Amer. Math. Soc. 11 (1960), 929–937. MR 117688, DOI 10.1090/S0002-9939-1960-0117688-X
- Sibe Mardešić and Pavle Papić, Continuous images of ordered continua, Glasnik Mat.-Fiz. Astronom. Društvo Mat. Fiz. Hrvatske Ser. II 15 (1960), 171–178 (English, with Serbo-Croatian summary). MR 130676 S. Mazurkiewicz, Sur les lignes de Jordan, Fund. Math. 1 (1920), 166-209.
- Sam B. Nadler Jr., Multicoherence techniques applied to inverse limits, Trans. Amer. Math. Soc. 157 (1971), 227–234. MR 279761, DOI 10.1090/S0002-9947-1971-0279761-7
- B. J. Pearson, Mapping an arc onto a dendritic continuum, Colloq. Math. 30 (1974), 237–243. MR 365530, DOI 10.4064/cm-30-2-237-243
- B. J. Pearson, Mapping arcs and dendritic spaces onto netlike continua, Colloq. Math. 34 (1975/76), no. 1, 39–48. MR 405373, DOI 10.4064/cm-34-1-39-48
- L. B. Treybig, Concerning continuous images of compact ordered spaces, Proc. Amer. Math. Soc. 15 (1964), 866–871. MR 167953, DOI 10.1090/S0002-9939-1964-0167953-9
- L. B. Treybig, Concerning continua which are continuous images of compact ordered spaces, Duke Math. J. 32 (1965), 417–422. MR 187220
- E. D. Tymchatyn, The Hahn-Mazurkiewicz theorem for finitely Suslinian continua, General Topology and Appl. 7 (1977), no. 1, 123–127. MR 431107
- A. J. Ward, Notes on general topology. III. A non-metric image of an ordered compactum, Proc. Cambridge Philos. Soc. 61 (1965), 881–882. MR 184212, DOI 10.1017/s0305004100039256
- L. E. Ward Jr., Mobs, trees, and fixed points, Proc. Amer. Math. Soc. 8 (1957), 798–804. MR 97036, DOI 10.1090/S0002-9939-1957-0097036-4 —, The Hahn-Mazurkiewicz theorem for rim-finite continua, General Topology and Appl. (to appear).
- Gordon Thomas Whyburn, Analytic Topology, American Mathematical Society Colloquium Publications, Vol. 28, American Mathematical Society, New York, 1942. MR 0007095
- G. S. Young, Representations of Banach spaces, Proc. Amer. Math. Soc. 13 (1962), 667–668. MR 143007, DOI 10.1090/S0002-9939-1962-0143007-0
Bibliographic Information
- © Copyright 1976 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 58 (1976), 369-374
- MSC: Primary 54F25
- DOI: https://doi.org/10.1090/S0002-9939-1976-0413063-0
- MathSciNet review: 0413063