A GENERALIZATION OF THE HAHN-MAZURKIEWICZ THEOREM

L. E. WARD, JR.

Abstract. It is proved that if a Hausdorff continuum X can be approximated by finite trees (see the text for definition) then there exists a (generalized) arc L and a continuous surjection $\varphi: L \to X$.

1. Introduction. The celebrated Hahn-Mazurkiewicz theorem, first proved about 1914 [4], [8], asserts that a Peano continuum is the image of $[0, 1]$ under some continuous mapping. Subsequent attempts to generalize the theorem to the nonmetric setting proved unavailing, and in 1960 Mardešić [6] described a locally connected Hausdorff continuum which is not arcwise connected (in the generalized sense) and hence is not the continuous image of any arc. Later Cornette and Lehman [3] exhibited a simpler example with the same properties. The possibility remained that an arcwise connected, locally connected continuum is the continuous image of some arc, but in [7] Mardešić and Papić showed that any product of continua which is the continuous image of an arc is necessarily metrizable. Consequently, even such a nice continuum as $L \times [0, 1]$, where L is the "long arc", is not the continuous image of an arc. Later results of Treybig [12], [13], A. J. Ward [15] and Young [19] elaborated on this theme.

Quite recently some affirmative results have appeared. Cornette [2] proved that a tree is the continuous image of some arc, and the author [17] has extended this to rim-finite continua. Different proofs of these results have been found independently by Pearson [10], [11].

In this paper we prove a generalization of the Hahn-Mazurkiewicz theorem which includes all of the aforementioned affirmative results.

We recall some terminology. A continuum is a compact, connected Hausdorff space. An arc is a continuum with exactly two noncutpoints. A tree is a continuum in which each pair of distinct points can be separated by some point. A finite tree is a tree with only finitely many endpoints.

A continuum X can be approximated by finite trees if there exists a family \mathcal{T} of finite trees such that

1. \mathcal{T} is directed by inclusion,
2. $\bigcup \mathcal{T}$ is dense in X,
3. if \mathcal{U} is an open cover of X then there exists $T(\mathcal{U}) \in \mathcal{T}$ such that if
Our principal result is the following.

Theorem 1. If X is a continuum which can be approximated by finite trees then there exists an arc L and a continuous surjection $\varphi: L \to X$.

2. **Proof of Theorem 1.**

Lemma 1. If $\{T_\alpha, r_\beta\}$ is an inverse system of trees and if the bonding mappings r_β are monotone, then $T_\infty = \text{inv lim} \{T_\alpha, r_\beta\}$ is a tree.

Proof. Nadler [9, Theorem 3] has shown that T_∞ is hereditarily unicoherent, and Capel [1] proved that T_∞ is locally connected. Hence [16, Theorem 9], T_∞ is a tree.

Lemma 2. If T_1 and T_2 are trees with $T_1 \subset T_2$, then there exists a retraction $r: T_2 \to T_1$ which is monotone. Moreover, if C is a component of $T_2 - T_1$ then C has one-point boundary $x(C)$ and $r(C) = x(C)$.

Proof. If C is a component of $T_2 - T_1$ then, by the hereditary unicoherence of trees, $\overline{C} \cap T_1$ is connected. Suppose $\overline{C} \cap T_1$ contains distinct elements x and y; then there are connected neighborhoods U_x and U_y of x and y, respectively, such that U_x and U_y are disjoint. Since C is an open set, we can invoke a standard chaining argument to show the existence of a continuum K which is contained in C and which meets both U_x and U_y. If we define $P = U_x \cup K \cup U_y$ and $Q = \overline{C} \cap T_1$, then P and Q are subcontinua of T_2, $P \cap Q \subset (U_x \cup U_y)$, and $P \cap Q$ meets both U_x and U_y. This contradicts the hereditary unicoherence of the tree T_2, and hence $\overline{C} \cap T_1 = \overline{C} - C$ consists of a single point, $x(C)$. Define $r: T_2 \to T_1$ by $r|T_1 = 1$ and $r(C) = x(C)$ for each component C of $T_2 - T_1$. It is straightforward to verify that r is continuous. Finally, r is monotone because, for each $x \in T_2$,

$$r^{-1}(x) = \{x\} \cup \bigcup \{ C: C \text{ is a component of } T_2 - T_1 \text{ and } \overline{C} \cap T_1 = \{x\} \} ,$$

which is a connected set.

For the remainder of this section let X be a continuum which is approximated by the family \mathcal{T} of finite trees. Then the system $\mathcal{T} = \{T_\alpha, r_\beta\}$ is an inverse system with monotone bonding maps, and hence $T_\infty = \text{inv lim} \mathcal{T}$ is a tree.

Lemma 3. If $(x_\alpha) \in T_\infty$ then (x_α) is a convergent net in X.

Proof. Let p be a cluster point of the net (x_α) and suppose V is an open set containing p. There exists a finite open cover β of X such that if $p \in U \in \beta$ then $\text{Star}(U, \beta) \subset V$. By hypothesis there exists $T_\beta \in \mathcal{T}$ such that if $T_\beta \subset T_\alpha \in \mathcal{T}$ and if C is a component of $T_\alpha - T_\beta$, then C lies in some member of β; moreover, we may assume $x_\beta \in U$. If $x_\beta \neq x_\gamma$, then, since $r_\beta(x_\gamma) = x_\beta$, it follows that the component C of $T_\gamma - T_\beta$ which contains x_γ has (x_β) for boundary, and hence $C \subset \text{Star}(U, \beta) \subset V$. Therefore the net (x_α) converges to p.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Lemma 4. The function \(g: T_\infty \rightarrow X \) defined by \(g((x_\alpha)) = \lim(x_\alpha) \) is a continuous surjection.

Proof. Let \(p = \lim(x_\alpha) \) and suppose \(V \) is an open set containing \(p \). Choose a finite open cover \(\beta \) of \(X \) and \(T_\beta \in \mathcal{T} \) as in Lemma 3. If \(p \in U \in \beta \), let \(W = \pi_\beta^{-1}(U \cap T_\beta) \cap T_\infty \), a neighborhood of \((x_\alpha)\) in \(T_\infty \) (\(\pi_\beta \) denotes the projection function). If \((y_\gamma) \in W\) then \(y_\gamma \in U \) and hence, if \(T_\beta \subset T_\gamma \subset \mathcal{T} \), it follows that \(y_\gamma \in \text{Star}(U, \beta) \subset V \). Therefore \(g((y_\gamma)) \in \overline{V} \) and so \(g \) is continuous.

To see that \(g \) is surjective let \((x_\alpha) \in T_\infty \) with \((x_\alpha)\) eventually constant. That is, there exists \(T_\beta \in \mathcal{T} \) such that \(x_\gamma = x_\beta \) for all \(T_\gamma \in \mathcal{T} \) with \(T_\beta \subset T_\gamma \). Then \(g((x_\alpha)) = x_\beta \) and hence \(g(T_\infty) \supseteq \overline{\mathcal{T}} \). Since \(g \) is continuous and \(\bigcup \mathcal{T} \) is dense in \(X \) it follows that \(g(T_\infty) = X \).

Proof of Theorem 1. By [2] and Lemma 1 there is an arc \(L \) and a continuous surjection \(f: L \rightarrow T_\infty \). By Lemma 4 the function \(\varphi = gf: L \rightarrow X \) is the desired mapping.

Recently E. D. Tymchatyn [14] has applied Theorem 1 to prove that each finitely Suslinian Hausdorff continuum is the continuous image of an arc. This generalizes the result of Cornette, Pearson and the author [2], [10], [11], [17] for trees and rim-finite continua.

It is irresistible to inquire whether the condition of being approximated by finite trees is necessary as well as sufficient for a continuum to be the continuous image of an arc. I conjecture that the answer is affirmative.

3. The classical Hahn-Mazurkiewicz theorem. Recall that a dendrite is a metrizable tree. In attempting to deduce the classical theorem from Theorem 1, we consider a metric continuum \(M \). We wish to show that if \(M \) can be approximated by a sequence of finite dendrites then \(M \) is the continuous image of \([0, 1]\). It follows from Theorem 1 that \(M \) is the image of some arc, but we have no assurance that the arc is separable. The proof that \(M \) is the continuous image of \([0, 1]\) is facilitated by the following two lemmas.

Lemma 5. If \(D \) is a finite dendrite then there exists a continuous surjection \(f: [0, 1] \rightarrow D \).

Proof. Since \(D \) has only a finite set \(\{e_1, \ldots, e_n\} \) of endpoints, \(n \geq 2 \), we may write \(D = A_2 \cup \cdots \cup A_n \) where \(A_2 = [e_1, e_2] \) is an arc and \(A_k = [d_k, e_k] \) is an arc irreducible between \((A_1 \cup \cdots \cup A_{k-1}) \) and
\(e_k \) where \(2 < k \leq n \). There is a homeomorphism \(f_2: [0, 1] \rightarrow A_2 \); suppose \(f_{k-1}: [0, 1] \rightarrow (A_1 \cup \cdots \cup A_{k-1}) \) is a continuous surjection with \(f_{k-1}(t) = d_k \). Without loss of generality we may assume \(0 < t < 1 \).

Define
\[
 h_1: [0, t] \rightarrow [0, \frac{1}{4}] \quad \text{by} \quad h_1(x) = x/4t,
\]
\[
 h_2: [t, 1] \rightarrow [\frac{3}{4}, 1] \quad \text{by} \quad h_2(x) = (x + 3 - 4t)/4(1 - t).
\]

Let
\[
 g_1: [\frac{1}{4}, \frac{1}{2}] \rightarrow [d_k, e_k] \quad \text{and} \quad g_2: [\frac{1}{2}, \frac{3}{4}] \rightarrow [e_k, d_k]
\]
be homeomorphisms which preserve the indicated endpoints. If we define
Lemma 6. If D and D' are finite dendrites with $D \subseteq D'$, $r: D' \to D$ is the natural monotone retraction and $f: [0, 1] \to D$ is a continuous surjection, then there exists a monotone mapping $s: [0, 1] \to [0, 1]$ and a continuous surjection $f': [0, 1] \to D'$ such that $fs = rf'$.

Proof. There are only finitely many elements x_1, \ldots, x_n of D which are the boundaries of components of $D' - D$. For each $i = 1, \ldots, n$ let

$$K_i = \{ x_i \} \cup \bigcup \{ C: C \text{ is a component of } D' - D \text{ and } x_i \in \overline{C} \},$$

and choose $t_i \in f^{-1}(x_i)$. Without loss of generality we assume $0 < t_1 < t_2 < \cdots < t_n < 1$. Define linear homeomorphisms h_0, \ldots, h_n as follows:

$$h_0: [0, t_1] \to [0, 1/(2n + 1)] \quad \text{by} \quad h_0(x) = x/(2n + 1)t_1,$$

$$h_k: [t_k, t_{k+1}] \to [2k/(2n + 1), (2k + 1)/(2n + 1)]$$

by

$$h_k(x) = (x + 2kt_{k+1} - (2k + 1)t_k)/(2n + 1)(t_{k+1} - t_k),$$

$$k = 1, \ldots, n - 1,$$

$$h_n: [t_n, 1] \to \left[\frac{2n}{2n + 1}, 1 \right] \quad \text{by} \quad h_n(x) = \frac{x + 2n - (2n + 1)t_n}{(2n + 1)(1 - t_n)}.$$ Each of the sets K_i is a finite dendrite, so by Lemma 5 there is a continuous surjection

$$g_i: \left[\frac{(2i - 1)}{(2n + 1)}, \frac{2i}{(2n + 1)} \right] \to K_i, \quad i = 1, \ldots, n.$$ Define $s: [0, 1] \to [0, 1]$ by

$$s = h_i^{-1} \quad \text{on} \quad \left[\frac{(2i - 2)}{(2n + 1)}, \frac{(2i - 1)}{(2n + 1)} \right], \quad 1 \leq i \leq n + 1,$$

$$s(t) = t_i \quad \text{if} \quad t \in \left[\frac{(2i - 1)}{(2n + 1)}, \frac{2i}{(2n + 1)} \right], \quad 1 \leq i \leq n,$$

and define $f': [0, 1] \to D'$ by

$$f' = \begin{cases} h_i^{-1} & \text{on} \quad \left[\frac{(2i - 2)}{(2n + 1)}, \frac{(2i - 1)}{(2n + 1)} \right], \\ g_i & \text{on} \quad \left[\frac{(2i - 1)}{(2n + 1)}, \frac{2i(2n + 1)}{(2n + 1)} \right], \quad 1 \leq i \leq n \end{cases}.$$ Then it is obvious that s is continuous and monotone, that f' is a continuous surjection and that $fs = rf'$.

We say that a metric continuum M can be approximated by a sequence of finite dendrites if there exists a sequence $D_1, D_2, \ldots, D_n, \ldots$ of finite dendrites such that
(1) \(D_1 \subset D_2 \subset \cdots \subset D_n \subset \ldots \),
(2) \(\bigcup \{ D_n : n = 1, 2, \ldots \} \) is dense in \(M \),
(3) if \(C \) is a component of \(D_{n+1} - D_n \) then \(\text{diam}(C) < 2^{-n} \).

Theorem 2. If \(M \) is a metric continuum then the following statements are equivalent:

(i) there exists a continuous surjection \(\psi : [0, 1] \to M \),
(ii) \(M \) is a Peano continuum,
(iii) \(M \) can be approximated by a sequence of finite dendrites.

Proof. It is well known that (i) \(\Rightarrow \) (ii). (For example, consult [5].)

To see that (ii) \(\Rightarrow \) (iii), it is a consequence of the fact that \(M \) is compact and locally connected that \(M \) admits a sequence \(\mathcal{U}_n \) of finite connected open covers such that \(\mathcal{U}_{n+1} \) refines \(\mathcal{U}_n \) and \(\text{diam}(U) < 2^{-n} \) for each \(U \in \mathcal{U}_n \). Independent of the Hahn-Mazurkiewicz theorem it can be shown that each member of \(\mathcal{U}_n \) is arcwise connected. (See [18, Chapter II, §5, under the second remark on p. 39, together with 5.3].) Therefore it is possible to construct a sequence of finite dendrites \(D_1, D_2, \ldots \) such that \(D_n \) meets each member of \(\mathcal{U}_n \), \(D_n \subset D_{n+1} \), and each component of \(D_{n+1} - D_n \) lies in some member of \(\mathcal{U}_n \).

To prove (iii) \(\Rightarrow \) (i), let \(M \) be approximated by the sequence \(D_1 \subset D_2 \subset \ldots \) of finite dendrites. By Lemmas 5 and 6 there are continuous surjections \(f_n \) and continuous monotone surjections \(r_n \) and \(s_n \) so that the ladder

\[
\begin{align*}
D_1 & \xleftarrow{r_1} D_2 \xleftarrow{r_2} \cdots \xleftarrow{r_{n-1}} D_n \xleftarrow{r_n} \\
& \downarrow f_1 \quad \downarrow f_2 \quad \cdots \quad \downarrow f_n \\
[0, 1] & \xleftarrow{s_1} [0, 1] \xleftarrow{s_2} \cdots \xleftarrow{s_{n-1}} [0, 1] \xleftarrow{s_n} \cdots
\end{align*}
\]

is commutative. It follows that \(D_\infty = \text{inv lim} \{ D_n, r_n \} \) is a dendrite, the limit of the inverse sequence \(\{ [0, 1], s_n \} \) is \([0, 1] \), and there is induced a continuous surjection \(f : [0, 1] \to D_\infty \). Let \(\psi = gf : [0, 1] \to M \).

References

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF OREGON, EUGENE, OREGON 97403