Embedding orthogonal partial Latin squares
HTML articles powered by AMS MathViewer
- by Charles C. Lindner
- Proc. Amer. Math. Soc. 59 (1976), 184-186
- DOI: https://doi.org/10.1090/S0002-9939-1976-0409227-2
- PDF | Request permission
Abstract:
Two partial latin squares are orthogonal provided that when they are superimposed any ordered pairs obtained are distinct. The purpose of this paper is to show that any collection of pairwise orthogonal finite partial latin squares can be embedded into pairwise orthogonal finite latin squares.References
- R. C. Bose and S. S. Shrikhande, On the falsity of Euler’s conjecture about the non-existence of two orthogonal Latin squares of order $4t+2$, Proc. Nat. Acad. Sci. U.S.A. 45 (1959), 734–737. MR 104590, DOI 10.1073/pnas.45.5.734
- Trevor Evans, Embedding incomplete latin squares, Amer. Math. Monthly 67 (1960), 958–961. MR 122728, DOI 10.2307/2309221
- Bernhard Ganter, Endliche Vervollständigung endlicher partieller Steinerscher Systeme, Arch. Math. (Basel) 22 (1971), 328–332 (German). MR 294145, DOI 10.1007/BF01222584 —, Partial pairwise balanced designs (to appear).
- Robert W. Quackenbush, Near vector spaces over $\textrm {GF}(q)$ and $(v,\,q+1,\,1)$-BIBD’s, Linear Algebra Appl. 10 (1975), 259–266. MR 369099, DOI 10.1016/0024-3795(75)90073-7
Bibliographic Information
- © Copyright 1976 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 59 (1976), 184-186
- MSC: Primary 05B15
- DOI: https://doi.org/10.1090/S0002-9939-1976-0409227-2
- MathSciNet review: 0409227