THE SUM OF A DIGITADDITION SERIES
KENNETH B. STOLARSKY

Abstract. Let $B(x)$ be the number of ones in the binary expansion of x. A "digitaddition series" is a sequence $y_1 < y_2 < y_3 < \ldots$, where y_1 is a given positive integer and $y_{n+1} = y_n + B(y_n)$ for $n = 1, 2, \ldots$. Various questions involving the y_m are studied; in particular, the asymptotic result $y_m \sim (m \log m)/(2 \log 2)$ is proved.

1. Introduction. For positive integers x, let $B(x)$ denote the sum of the digits in the binary expansion of x. For example, the binary expansion of 13 is 1101, so $B(13) = 3$. A sequence of integers $y_1 < y_2 < y_3 < \ldots$ is called a "digitaddition series" if

$$y_{n+1} = y_n + B(y_n), \quad n = 1, 2, \ldots$$

Such series have been studied by Kaprekar [7], [11]-[14] and others [1]-[10], [15]-[18]. Much attention [7], [10]-[14], [17]-[18] has been given to self-numbers, the integers that are not of the form $x + B(x)$. However, the asymptotics of digitaddition series seem to have been neglected. M. Gardner [7] points out (for the corresponding problem in base ten) that no simple formula seems to be known for the sum

$$S(n) = S(n; y_1) = \sum_{m=1}^{n} y_m.$$

We prove

$$S(n) \sim (n^2/4)(\log n)/(\log 2),$$

and in fact a bit more. We remark that the right side of (1.3) is independent of y_1. Here $f(n) \sim g(n)$ has the usual meaning, that $\lim f(n)/g(n) \to 1$ as $n \to \infty$.

We first show that the sequence y_m grows "slowly" by obtaining a crude upper bound for y_m. Next, we note that if x is a "typical" integer, then $B(x)$ is approximately $(\log_2 x)/2$. Thus, since the sequence y_m grows "slowly", most of its terms must be "typical" integers, and hence y_m is approximately $\sum_{x=1}^{m}(\log_2 x)/2 \sim (m \log_2 m)/2$. To carry out the details we use the inequality

$$\sum_{j>(T/2)+\lambda}{\left(\begin{array}{c} T \\ j \end{array}\right)} < 2^T \exp(-2\lambda^2/T);$$

see [6, p. 17] or [5].
2. The results. Henceforth, \(\log t \) shall denote the logarithm of \(t \) to the base 2.

Theorem 1.

\[S(n) = (n^2/4)\log n + O\left\{ n^2(\log n \log \log n)^{1/2} \right\}. \]

Since

\[\int x \ln x \, dx = (x^2/2)\ln x - (x^2/4) + C, \]

Theorem 1 can be deduced easily from the following result.

Theorem 2.

\[y_m = (m/2)\log m + O\left\{ m(\log m \log \log m)^{1/2} \right\}. \]

In particular, \(y_m \sim (m/2)\log m \).

3. The proof. We first obtain a crude upper bound on \(y_m \). Iteration of (1.1) yields

\[y_{m+1} = y_1 + \sum_{k=1}^{m} B(y_k). \]

The trivial bound \(B(x) \leq 1 + [\log x] \), where \([z]\) denotes the greatest integer in \(z \), yields

\[y_{m+1} \leq y_1 + m + \log(y_1y_2 \cdots y_m). \]

The trivial bound \(B(x) \leq x \), together with (1.1), yields \(y_m \leq 2^m y_1 \). Thus, from (3.2), we find that

\[y_{m+1} \leq m^2 \]

for \(m \) sufficiently large, say \(m > M \). By (3.4) and (3.2) again, we obtain

\[y_{m+1} \leq y_1 + m + \log(y_1 \cdots y_m) + \log(m!)^2 \leq 3m \log m \]

for \(m \) sufficiently large, say \(m \geq m_0 \).

We now refine this upper bound. Choose \(\ell \) real so that

\[[\ell/\log \ell] = m. \]

Then for \(m \geq m_0 \) we have from (3.4) and (3.5) that

\[1 \leq y_i \leq y_m \leq 3\ell \quad \text{for} \quad 1 \leq i \leq m. \]

Next, set \(T = 1 + [\log 3\ell] \) and let \(\lambda \) be a positive real number. Define \(u = u(\lambda) \) by

\[u = T/2 + \lambda. \]

Let \(s = s(\ell, \lambda) \) denote the number of integers \(y \) such that \(1 \leq y \leq 3\ell \) and

\[B(y) \geq u. \]

The number of \(y \) such that \(0 \leq y \leq 3\ell \) and \(B(y) = j \) is at most \(\binom{T}{j} \), so by (1.4) we have
THE SUM OF A DIGITADDITION SERIES

(3.9) \[s \leq \sum_{j \geq u} \left(\frac{T}{j} \right) < 6t \exp\{-2\lambda^2/T\}. \]

Now choose

(3.10) \[\lambda = \left(\frac{T}{2} \right)^{1/2} \left(\log(\log^2 t) \right)^{1/2}. \]

Thus

(3.11) \[s < 6t/\log^2 t \]

and from (3.1) we have

\[y_m < y_1 + u \{ m - 1 - s \} + T s \]

(3.12) \[= y_1 + \left\{ \frac{\log t}{2} + O(\{\log t \log \log t\}^{1/2}) \right\} \cdot \left\{ \frac{t}{\log t} + O\left(\frac{t}{\log^2 t} \right) \right\} + O\left(\frac{t}{\log t} \right). \]

We conclude that

(3.13) \[y_m < t/2 + O\left(t(\log t)^{-1/2}(\log \log t)^{1/2} \right). \]

From (3.5) it is easy to obtain

(3.14) \[m \log m < t < m \log m + O\left(m \log \log m \right). \]

Hence

(3.15) \[y_m < (m/2)\log m + O\left(m(\log m \log \log m)^{1/2} \right). \]

We now use the same method to obtain a lower bound for \(y_m \). This time define \(u \) by

(3.16) \[u = T/2 - \lambda \]

and let \(s = s(t, \lambda) \) be the number of integers \(y \) such that \(1 \leq y \leq 3t \) and

(3.17) \[B(y) < u. \]

Then (note that \((\log^2 t) = (T/\log t) \)) we have

(3.18) \[s \leq \sum_{j < u} \left(\frac{T}{j} \right) < 6t \exp\{-2\lambda^2/T\}. \]

By choosing \(\lambda \) exactly as before, we obtain

\[y_m \geq u \{ m - 1 - s \} \]

(3.19) \[\geq \left\{ \frac{\log t}{2} + O(\{\log t \log \log t\}^{1/2}) \right\} \cdot \left\{ \frac{t}{\log t} + O\left(\frac{t}{\log^2 t} \right) \right\}. \]

We conclude from (3.19) and (3.14) that

(3.20) \[y_m \geq t/2 + O\left(t(\log t)^{-1/2}(\log \log t)^{1/2} \right) \]

and
(3.21) \[y_m > (m/2) \log m + O \left(m \log m \log \log m \right)^{1/2}. \]

This completes the proof.

4. Remarks. Theorem 2 cannot be improved to

\[y_m = \frac{m}{2} \log m + O \left(\frac{\log m}{\log \log m} \right). \]

We also remark that the second difference of \(y_m \) is unbounded from below. In fact, the inequality

\[y_{m+1} - 2y_m + y_{m-1} \leq -\log m + 4 \log \log m \]

holds infinitely often. Both of these assertions are easy consequences of the fact that when the digitaddition series goes past \(2^n - 1 \), the number of ones in the binary representations of the \(y_m \) drops precipitously. We omit the details.

Much more than the negation of (4.1) is proved below.

Some open questions: (1) Is \(y_m - (m/2) \log m \) unbounded? (2) Is \(B(y_{m+1}) - B(y_m) \) unbounded from above as \(m \to \infty \)? (3) Does the second difference of a digitaddition sequence attain every integer value infinitely often? It is also of interest to determine whether the answers to these questions depend on the choice of \(y_1 \). It is conceivable [2], [3], [8] that for any two digitaddition sequences \(y_1 < y_2 < \ldots \) and \(y'_1 < y'_2 < \ldots \) there exists an integer \(k \) depending only on \(y_1 \) and \(y'_1 \) such that \(y'_{m+k} = y_n \) for \(n \) sufficiently large.

In connection with question (1) we remark that the error term of Theorem 2 is in fact \(O(m^{-\epsilon}) \) for any \(\epsilon > 0 \). This was pointed out by Paul Erdös; the main idea of its demonstration which follows is also due to Professor Erdös.

The proof of Theorem 2 is valid, with no essential change, for any recursion of the form

\[y_{n+1} = y_n + B(y_n) + E(y_n) \]

provided \(E(x) = O((\log x \log \log x)^{1/2}) \). We only need this fact for \(E(x) \equiv 1 \). For \(\epsilon > 0 \) and \(n \) large, define

\[k = \left\lceil n^{-1} 2^{n(1-\epsilon)} \right\rceil \quad \text{and} \quad m = \left\lceil n^{-1} 2^{n+1}(1 + n^{-0.1}) \right\rceil. \]

A direct application of Theorem 2 yields

\[2^n < y_m < y_{1.1m} < 2^{n+1}. \]

Thus for \(h < .1m \) we have that \(y_{m+h} = 2^n + z_h \) where \(y_m = 2^n + z_0 \) and

\[z_{h+1} = z_h + B(z_h) + 1 \quad (h \geq 1). \]

Assume that Theorem 2 is valid with an error term \(O(m^{-1-\epsilon}) \). Then

\[y_{m+k} - y_m = ((m + k)/2) \log(m + k) - (m/2) \log m + O(m^{-1-\epsilon}) \]

\[> (k/2) \log m + O(m^{1-\epsilon}) + \frac{1}{2} 2^{n(1-\epsilon)} n^{-1+\epsilon}. \]

But by the theorem itself.
\[y_{m+k} - y_m = z_k = (k/2)\log k + O\left(k(\log k)^{3/4}\right) = ((1 - \varepsilon)/2)2^{n(1-\varepsilon)} + O\left(2^{n(1-\varepsilon)n^{-1/4}}\right), \]

and this contradicts (4.7).

In connection with question (3), we remark that if \(y_1 = n \), then the sequence of second differences begins with \(g(n) \), where

\[g(n) = B(n + B(n)) - B(n), \]

and that we have the following

Proposition. Given an integer \(a \), there are infinitely many positive integers \(n \) such that \(g(n) = a \).

Proof. If \(a = 0 \) let \(n = 2^q + 2 \) where \(q \geq 3 \). If \(a \geq 1 \), set \(p = 2^a - 1 \) and \(n = 2^{m_1} + \cdots + 2^{m_{p-1}} + 2^p \) where \(m_1 > m_2 > \cdots > m_{p-1} > p \). If \(a < 0 \) set \(q = |a| + 1 \), \(p = 2^q - q \), \(r = 2q \), and \(n = 2^{m_1} + \cdots + 2^{m_r} + 2^r - 2^q \) where \(m_1 > m_2 > \cdots > m_r > r \).

References

Department of Mathematics, University of Illinois, Urbana, Illinois 61801