Two characterizations of conditional probability
HTML articles powered by AMS MathViewer
- by M. M. Rao
- Proc. Amer. Math. Soc. 59 (1976), 75-80
- DOI: https://doi.org/10.1090/S0002-9939-1976-0410823-7
- PDF | Request permission
Abstract:
This note contains two types of functional equations characterizing the conditional probability measures as subclasses of vector measures on general Banach function spaces. One uses the theory of vector integration and the other employs a form of the Šidák identity.References
- T. Andô, Contractive projections in $L_{p}$ spaces, Pacific J. Math. 17 (1966), 391–405. MR 192340
- Lester E. Dubins, Conditional probability distributions in the wide sense, Proc. Amer. Math. Soc. 8 (1957), 1088–1092. MR 103527, DOI 10.1090/S0002-9939-1957-0103527-X
- Nelson Dunford and Jacob T. Schwartz, Linear operators. Part I, Wiley Classics Library, John Wiley & Sons, Inc., New York, 1988. General theory; With the assistance of William G. Bade and Robert G. Bartle; Reprint of the 1958 original; A Wiley-Interscience Publication. MR 1009162
- Neil E. Gretsky, Representation theorems on Banach function spaces, Memoirs of the American Mathematical Society, No. 84, American Mathematical Society, Providence, R.I., 1968. MR 0415388
- Milton Philip Olson, A characterization of conditional probability, Pacific J. Math. 15 (1965), 971–983. MR 185634
- M. M. Rao, Conditional expectations and closed projections, Indag. Math. 27 (1965), 100–112. Nederl. Akad. Wetensch. Proc. Ser. A 68. MR 0179815
- M. M. Rao, Conditional measures and operators, J. Multivariate Anal. 5 (1975), no. 3, 330–413. MR 394785, DOI 10.1016/0047-259X(75)90052-4
- Zbyněk Šidák, On relations between strict sense and wide sense conditional expectations, Teor. Veroyatnost. i Primenen. 2 (1957), 283–288 (English, with Russian summary). MR 0092249
- Adriaan Cornelis Zaanen, Integration, North-Holland Publishing Co., Amsterdam; Interscience Publishers John Wiley & Sons, Inc., New York, 1967. Completely revised edition of An introduction to the theory of integration. MR 0222234
Bibliographic Information
- © Copyright 1976 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 59 (1976), 75-80
- MSC: Primary 60A10; Secondary 46G10
- DOI: https://doi.org/10.1090/S0002-9939-1976-0410823-7
- MathSciNet review: 0410823