A semidirect product decomposition for certain Hopf algebras over an algebraically closed field
HTML articles powered by AMS MathViewer
- by Richard K. Molnar
- Proc. Amer. Math. Soc. 59 (1976), 29-32
- DOI: https://doi.org/10.1090/S0002-9939-1976-0430009-X
- PDF | Request permission
Abstract:
Let $H$ be a finite dimensional Hopf algebra over an algebraically closed field. We show that if $H$ is commutative and the coradical ${H_0}$ is a sub Hopf algebra, then the canonical inclusion ${H_0} \to H$ has a Hopf algebra retract; or equivalently, if $H$ is cocommutative and the Jacobson radical $J(H)$ is a Hopf ideal, then the canonical projection $H \to H/J(H)$ has a Hopf algebra section.References
- Robert G. Heyneman and Moss Eisenberg Sweedler, Affine Hopf algebras. I, J. Algebra 13 (1969), 192–241. MR 245570, DOI 10.1016/0021-8693(69)90071-4
- Saunders Mac Lane, Homology, Classics in Mathematics, Springer-Verlag, Berlin, 1995. Reprint of the 1975 edition. MR 1344215
- Richard K. Molnar, Semi-direct products of Hopf algebras, J. Algebra 47 (1977), no. 1, 29–51. MR 498612, DOI 10.1016/0021-8693(77)90208-3
- John Brendan Sullivan, Affine group schemes with integrals, J. Algebra 22 (1972), 546–558. MR 304418, DOI 10.1016/0021-8693(72)90166-4
- John Brendan Sullivan, A decomposition theorem for pro-affine solvable algebraic groups over algebraically closed fields, Amer. J. Math. 95 (1973), 221–228. MR 360614, DOI 10.2307/2373654
- Moss Eisenberg Sweedler, Connected fully reducible affine group schemes in positive characteristic are abelian, J. Math. Kyoto Univ. 11 (1971), 51–70. MR 280499, DOI 10.1215/kjm/1250523686
- Moss E. Sweedler, Hopf algebras, Mathematics Lecture Note Series, W. A. Benjamin, Inc., New York, 1969. MR 0252485
- Mitsuhiro Takeuchi, A correspondence between Hopf ideals and sub-Hopf algebras, Manuscripta Math. 7 (1972), 251–270. MR 321963, DOI 10.1007/BF01579722
Bibliographic Information
- © Copyright 1976 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 59 (1976), 29-32
- MSC: Primary 17B50
- DOI: https://doi.org/10.1090/S0002-9939-1976-0430009-X
- MathSciNet review: 0430009