On maximality of Gorenstein sequences
HTML articles powered by AMS MathViewer
- by Maria Grazia Marinari
- Proc. Amer. Math. Soc. 59 (1976), 33-38
- DOI: https://doi.org/10.1090/S0002-9939-1976-0441956-7
- PDF | Request permission
Abstract:
It is well known that if $A$ is a Gorenstein ring, then every ideal generated by a regular sequence ${\text {x}} \subset A$ has irreducible (minimal) primary components. This feature led us to define a Gorenstein sequence of a ring $A$ to be any ordered regular sequence ${\text {x}} = \{ {x_1}, \ldots ,{x_r}\} \subset A$ such that for every $i \in \{ 1, \ldots ,r\}$ the ideal $({x_1}, \ldots ,{x_i})$ has irreducible minimal primary components. We showed for Gorenstein sequences (${\mathbf {G}}$-sequences for short) some parallels of well-known properties of regular sequences and moreover by means of ${\mathbf {G}}$-sequences we gave the following natural characterization of local Gorenstein rings: “A local ring $(A,\;\mathfrak {m})$ is Gorenstein iff $\mathfrak {m}$ contains a ${\mathbf {G}}{\text { - sequence of length = }}K{\text { - }}\dim A$". In this note we are going to give some information about “maximality” of ${\mathbf {G}}$-sequences in a local ring $A$, producing sufficient conditions on $A$ in order that the maximal ${\mathbf {G}}$-sequences of $A$ all have the same length, i.e. in order to give a “good” definition of ${\mathbf {G}}$-depth $A$. Furthermore, we will state some results about the ${\mathbf {G}}$-depth behavior with respect to local flat ring homomorphisms.References
- Hyman Bass, On the ubiquity of Gorenstein rings, Math. Z. 82 (1963), 8–28. MR 153708, DOI 10.1007/BF01112819
- Frank DeMeyer and Edward Ingraham, Separable algebras over commutative rings, Lecture Notes in Mathematics, Vol. 181, Springer-Verlag, Berlin-New York, 1971. MR 0280479
- Jean Dieudonné, Topics in local algebra, Notre Dame Mathematical Lectures, no. 10, University of Notre Dame Press, Notre Dame, Ind., 1967. Edited and supplemented by Mario Borelli. MR 0241408 A. Grothendieck, Éléments de géométrie algébrique, Inst. Hautes Études Sci. Publ. Math. No. 24 (1965); ibid, No. 32 (1967). MR 33 #7330; 39 #220.
- Silvio Greco and Paolo Salmon, Topics in ${\mathfrak {m}}$-adic topologies, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 58, Springer-Verlag, New York-Berlin, 1971. MR 0282956
- Jürgen Herzog and Ernst Kunz (eds.), Der kanonische Modul eines Cohen-Macaulay-Rings, Lecture Notes in Mathematics, Vol. 238, Springer-Verlag, Berlin-New York, 1971. Seminar über die lokale Kohomologietheorie von Grothendieck, Universität Regensburg, Wintersemester 1970/1971. MR 0412177
- Ernst Kunz, The value-semigroup of a one-dimensional Gorenstein ring, Proc. Amer. Math. Soc. 25 (1970), 748–751. MR 265353, DOI 10.1090/S0002-9939-1970-0265353-7
- Maria Grazia Marinari, Successioni di Gorenstein e proprietà $\textbf {G}_{n}$, Rend. Sem. Mat. Univ. Padova 48 (1972), 67–93 (1973) (Italian). MR 347811 —, Alcune carat terizzazioni degli anelli ${{\mathbf {G}}_n}$, Matematiche (Catania) 28 (1973). —, Gorenstein sequences and ${{\mathbf {G}}_n}$ condition, J. Algebra (to appear). M. Paugam, La condition $({G_q})$ de Ischebeck, C. R. Acad. Sci. Paris Sér. A-B 276 (1973), A109-A112. MR 49 #10683.
- Idun Reiten and Robert Fossum, Commutative $n$-Gorenstein rings, Math. Scand. 31 (1972), 33–48. MR 376664, DOI 10.7146/math.scand.a-11410
- Idun Reiten, The converse to a theorem of Sharp on Gorenstein modules, Proc. Amer. Math. Soc. 32 (1972), 417–420. MR 296067, DOI 10.1090/S0002-9939-1972-0296067-7
- R. Y. Sharp, Cousin complex characterizations of two classes of commutative Noetherian rings, J. London Math. Soc. (2) 3 (1971), 621–624. MR 294323, DOI 10.1112/jlms/s2-3.4.621
- Kei-ichi Watanabe, Takeshi Ishikawa, Sadao Tachibana, and Kayo Otsuka, On tensor products of Gorenstein rings, J. Math. Kyoto Univ. 9 (1969), 413–423. MR 257062, DOI 10.1215/kjm/1250523903
Bibliographic Information
- © Copyright 1976 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 59 (1976), 33-38
- MSC: Primary 13H10
- DOI: https://doi.org/10.1090/S0002-9939-1976-0441956-7
- MathSciNet review: 0441956