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MULTIPLIERS ON THE RIGID MOTIONS OF THE PLANE

AND THEIR RELATIONS

TO MULTIPLIERS ON DIRECT PRODUCTS

RICHARD L. RUBIN

Abstract. Hormander multiplier theorems on M(2) and R2 x T are devel-

oped. The relations between these theorems are studied. Applications to

fractional Laplace operators and R3 Riesz transforms are given.

The purpose of this paper is to study Hormander multipliers on the

nonabelian group of rigid motions of the Euclidean plane and to show how

these multipliers correspond to Hormander multipliers on the direct product

of the plane with the circle. The relationships established may be used to

demonstrate how aspects of harmonic analysis on the motion group arise

from harmonic analysis on three-dimensional Euclidean space. The primary

tool used in the study of Hormander multipliers in this paper is the theory of

spaces of homogeneous type developed by Coifman, de Guzman, and Weiss

(cf. [1]).

The author wishes to thank Professors Guido Weiss and Ronald Coifman

for their many helpful discussions concerning this work.

1. We review the notation essential to analysis on the motion group. For

details of the elements of Fourier analysis on this group see [4]. The three-

dimensional nonabelian solvable group of rigid motions of the Euclidean

plane, denoted by M(2), consists of transformations, (x, <(>), which map.y £ C

to (x, <b)iy) £ C where (x, <p)iy) = e'*y + x, for x £ C, <?> £ R2/2ttZ = T.

The Fourier transform on M(2) is the linear transformation which maps

/ £ LP(M(2)) n L2(M(2)) to the operator-valued function Tf(R) on (0, oo)

defined as follows: if g £ L\T), then for each R > 0,

[Tf{R)]g(9)- r f{Rei(9+*\ <t>)gi9 + <b) d<t>
J -77

where

/(£,*)- y- f f{x,$)e-ix*dx.

By considering the matrix of 7}(/<) with respect to the basis {e'ke: k is an

integer}, to be the matrix with entries TyR,j, k) we obtain

Tf(RJ, k) = ± f f /(35^^)el(*-^e» d9 <ty.
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Given any function / G L2(M(2)), we may recover / from its matricial

Fourier transform by the formula

/(re*,*) - -L f"tT[Tf(R)J(<t>, rR,ij,)]R dR

where J(<f>, r, xp) is the matrix with/ k entry iJ~kJj_k(r)e~i{<J'k^+k'i'] and

equality is in L2(M (2)). Here /„(x) denotes the Bessel function of the first

kind of order n and tr denotes the trace operator. We also have the Plancherel

formula:

MlUco-f JKut*»-C     2      |7>(*,y,*)|2*dR.
•^(2) •'O     j,k=-oo

Given any countably infinite matrix-valued function on the positive reals,

M(R), we define the left multiplier operator induced by M(R) to be the

operator which maps/ G LP(M(2)) n L2(M(2)) to A//where

MJ(re'+,$) = ^ f00tr[M(R)Tf(R)Jict>, Rr,t)]RdR.

Such operators commute with left multiplication by elements of A/(2). The

following characterization of multiplier operators which are bounded on

L2(M(2)) is a consequence of the Plancherel formula for M(2): A multiplier,

MfR), defines a bounded multiplier operator on L2(M(2)) if and only if the

operator norm of A/(/?) on 72(C) is essentially bounded on (0, co).

We shall use the following notation to simplify the study of multiplier

operators on M(2). Let D°M(R,j, k) denote M(R,j, k); let DlM(R,j, k)

denote either (d/dR)M(R,J, k) or M(R,j + 1, k + 1) - M(R,j, k) where

the difference is replaced by 0 if A: = —1,0; let D2M(R,j, k) denote either

(d2/dR2 + R~ld/dR - ((j - k)/R)2)M(RJ, k) or M(RJ + 1, k + 1) -

2M(R,j, k) + M(R, j — I, k — 1) where the difference is replaced by 0 if
k = -1,0,1.

A group which is closely related to A/ (2) is the locally compact abelian

group, the direct product of the plane with the circle, denoted by R2 X T.

The dual group to R2 X T is the direct product of the plane with the integers,

R2 X Z. The Fourier transform of a function,/ defined on R2 X T is

7}(x,/) = f" f(x,0)e-lj9 d9
J — 77

where x G 7?2 and y G Z. Multiplier operators on L2(R2 X 7/ n

LP(R2 X 7") are induced by functions M(x,j) on R2 X Z by setting

Mf(z,4>)=    2     I   M(x,j)Tf(x,j)eixze^dx.
J t>2

J= — OO      A

As in the case of M(2), the following notation will simplify the study of

multiplier operators on R2 X 7. Let D°M(Reie, k) denote M(Rew, k); let

DiM(Rei0, k) denote either

(3/o/?)M(fle''9,7c)

or
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MiReie,k + 1) - MiRew,k)

where the difference is replaced by 0 if k = - 1, 0; let D2MiRe'9, k) denote

either

(32/3/v2+ R-xd/dR + R-2d2/d62)MiRew,k)

or

M{Rew, k + 1) - 2MiReiB, k) + M(Reie, k-l)

where the difference is replaced by 0 if k = -1,0, 1.

2. Hormander multiplier theorems on M(2) and R2 X T. We are now in a

position to announce theorems on M(2) and R2 X T which are analogous to

the classical Hormander multiplier theorem on R". The classical Hormander

theorem states: Let a be a multi-index a = (a,, . . . , a„), |a| = 2/_i«,-, and

let Da =aH/dxai • • • 3xan. Suppose m £ L°°(/?") satisfies /^D"//.^)!2 dx

< Cy"~2|a| for 0 < s < oo and \a\ < the smallest integer greater than n/2,

where A is) = {x:s <|x| < 2^} and C is a constant. Then the operator

mapping/ to (w/)" is bounded on LpiR"), 1 < p < oo (cf. [3]). The corre-

sponding theorem on M(2) is

(1) Theorem. Let M be the bounded left multiplier operator on L2(M(2))

induced by the matrix-valued function MiR). Let MiR, j, k) denote the j, k

entry of the matrix MiR). If MiR, j, k) satisfies:

(i) 2JL_x\M(/?,/, k)\2 < C when k = — 1, 0, 1 vw'/7) C a constant indepen-

dent of R, and

OO CO

(ii) f 2        2|DW(/iI;1i)f/l<«<C!i-2a
^£(0,00)    *--aoy--oo

s.t.i< R + \k\<2s

for a = 0, 1, 2 <2«/i

2 j/0 < j < i ,
X = I 0 <  5  <   00,

3 ifs>\,

then M is bounded on Z/(M(2)), 1 < p < 2, a/j<i j's of weak-type 1:1.

This theorem will be proved in §3.

The extension of this result to LpiM(2)) for 2 < /? < oo follows easily

from the facts that: the boundedness of M on LpiM(2)) for 2 < p < oo is

equivalent to the boundedness of the adjoint of M, denoted M*, on

Lq(M(2)) for 1 < c7 < 2, and M* is the multiplier operator induced by the

transpose of MiR).

It is interesting to note that Theorem (1) corresponds formally to the

classical Hormander theorem for R2 when 0 < s < \ and to the classical

Hormander theorem for R3 when 5 > {. This phenomenon will be discussed

in the proof of Theorem (1).

The analogue of the Hormander theorem on R2 X T is
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(2) Theorem. Let M be the bounded multiplier operator on L2(R2 X T)

induced by the function M(Reie, k). If M(Rew, k) satisfies:

(i) r_J\M(Rei9, k)f dO < C when k = - 1, 0, 1 w/77i C a constant indepen-

dent of R, and

(ii) f 2        C \DaM(ReIB, k)\2 dO R dR< C/"2a
JRe(0,X)   k=-oo     J-*

s.t.5< R + \k\<2s

for a = 0, 1,2 and

2 7/0 < 5 <i ,

A = \ 0 < s < oo,

3 //* >i,

then M is bounded on LP(R2 X T), 1 < p < oo, aw/ 7$ of weak-type 1:1.

In the remainder of this section, we shall study the correspondences

between Theorems (1) and (2). If M(R,j, k) defines a multiplier operator

which satisfies the hypotheses of Theorem (1), call M(R,j, k) a Hormander

multiplier for M(2). Define Hormander multipliers for R2 X T analogously.

We say that the multipliers M(R, j, k) on M (2) and M(ReiB, k),

M(Re'9, k) on R2 X T are related if

(a) M(R,k,j) = ^-  C M(Reie,  k)e-ak~J)s dO,
2tr J-v

(b) M(R,j, k) = 4~ (" MiRew, k)e-'ik-J)e dd.
2tt J_7T

(3) Corollary, (i) Suppose the multiplier operator M defined by M (R,j, k)

is bounded on L2(M(2)). If the related multipliers, M(Rew, k) and M(Rew, k),

are Hormander multipliers on R2 X T, then M is bounded on LP(M(2)),

1 < p < oo, and is of weak-type 1 : 1.

(ii) Suppose the multiplier operator M defined by M(Re'e, k) is bounded on

L2(R2 X T). If the related multiplier M(R,j, k) is a Hormander multiplier on

M(2), then M is bounded on LP(R2 X T), 1 < p < oo, and is of weak-type

1 : 1.

The Corollary is easily proved, (i) is established by noting that the hypothe-

ses of Theorem (2) combined with condition (a) and the Plancherel formula

for T imply the hypotheses of Theorem (1) for the operator induced by the

transpose of M(R). Similarly, the hypotheses of Theorem (2) and condition

(b) imply the hypotheses of Theorem (1) for the operator induced by M(R).

(ii) is proved in the same manner.

3. The proof of Theorem (1). We begin the proof by applying the theory of

spaces of homogeneous type [2, Chapter III]. It is easy to verify that the

function

,((;c^)) = {[«((-^))]3/2    *«((*.♦))<!.

a((x,4>)) otherwise,
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where a((x, <£)) = |x|2 + 4 sin2(<|>/2), defines a pseudo-distance, d, in the sense

of Coifman-Weiss [2, p. 66] by setting J(w, v) — «(w_1jj). Using this function,

together with Haar measure on M (2), i2tr)~x dx d§, one can check that M(2)

is a space of homogeneous type. The essential step is to note that the sets {(x,

<£>) £ M(2): |x|2 + 4 sin2 (<f>/2) < r) have Haar measure on the order of r3 if

r is small and on the order of r2 if r is large. Thus, the sets Sr =

((x, <b) £ M (2): di(x, <£), (0, 0)) < r) have measure on the order of r. The

work of Coifman, de Guzman, and Weiss [1], [2] shows that this property of

the sets Sr allows one to prove analogues of the classical Whitney and Wiener

covering lemmas. These lemmas, in turn, may be used to obtain a Calderon-

Zygmund theory of integral operators on M(2). It is the condition on the

measure of the sets Sr that requires the two part definition of n which results

in the Hormander theorem on M (2) corresponding in part to the Hormander

theorem on R3 and in part to the Hormander theorem on R 2.

The next step in the proof is to combine the existence of a well-behaved

approximation to the identity on M (2) with the Calderon-Zygmund theory to

obtain a criterion for the Lp boundedness of operators which map L2 to itself

and commute with the group operation.

The proper approximate identity is given for (x, <b) £ M (2) and r a positive

real number by

(c) Gi(x,<t>),r) =
[W(x,r)w(<f>,r), if r > I,

where W is the Gauss kernel for R2, W(x, r) = (4nr)~'exp(— |x|2/4/-), and vv

is the periodization of the Gauss kernel for R,

CO

w(2vt, r) = 2it    2    wi' + k> r)
k= — co

with

w(,, r) = (477/-r1/V'2/4'', ~\<t<{.

For u £ M(2), set Tr(u) = Giu, r) - Giu, r/2). A modification of the

discussion in Coifman and Weiss [2, Chapter III, §§2, 3] gives the following

result:

(4) Theorem. Suppose M is a bounded linear operator on L2(A/(2)) which

commutes with the left action of M(2). Suppose that there exist constants e and

C such that

(d) f \[M(rr)]iu)\2niuy+2*du<Cr2*.

Then M defines a bounded operator on L\M (2)) n LpiM(2j), 1 < p < 2, and

is of weak-type 1:1.

We shall describe how properties of n(u) combined with the Plancherel

formula for M (2) and Theorem (4) determine criteria for the Lp boundedness

of multiplier operators on M (2). Choosing e = | when r < 1 and e = \ when

r > 1, a calculation using the fact that
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(|x|2 + 4sin2<i>/2)4/3<(|x|2 + 4sin24>/2)2    if n((x, <b)) > 1,

shows that (d) is implied by

/    |[M(rr)](u)|>(u)|2^<cf'-,/3   |}'<J.
/v/(2) l r if r > 1.

Applying the Plancherel formula for TV/(2) to this, we see that (d) is implied

by

(e) r     2     \T[M<TMR>J>k)\lRdR   <c\ri/3    Hr<\,
Jo   m—J ' lr ifr > 1.

In order to study this expression, we write the Fourier transform of the

product of a function/on M (2) with a in terms of the Fourier transform off.

Tfa(R,j,k) = -A2TfiR,j -l,*-l)-(-£L + l -^yf(RJ,k)

+ (^)W*)
where A2 is the second difference operator:

A2Tf(R,j - 1, k - 1) = Tf(R,j + 1, k + I)

-2Tf(R,j,k)+ Tf(R,j- \,k- 1).

Another calculation shows that

exp(- r2/\R2 + k2)) - exp( - ( r- }V\r2 + k2))

if k = / and r < 1,

TTr(R,j,k) = - exp,_r,R2+ ^_expj_ ^(R2 + k2))

if rv = y and r > 1,

0      if k=tj.

Thus the matrix 7/ (/?) is diagonal.

Assume the hypotheses of Theorem (1). We will have proved the theorem

provided we show (e) holds. In order to do this, recall Leibnitz's rule for

second differences: if

A\A(j,k)) = A(j + \,k+ l)-A(j,k)

and

A2iAiJ,k)) = A(j + 2, k + 2) - 2A(j + 1, k + I) + A(j,k),

then

A2[AiJ- l,k- 1)5(7- 1,*- 1)]

= [A2A(j- 1,/c- \)]B(j,k) + AA(j - \,k- \)AB(j- 1,7c- 1)

+ AA(j,k)AB(j,k) + A(j,k)[A2B(j- 1,/c- 1)].
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Applying the above work, as well as the familiar Leibnitz's rule, to (e) gives

-2-^MiRJ,k)^TTriR,k,k)

-MiR,J,k)(^-2+^)^{R,k,k)

+ {'ntL) M(R>J,k)TTiR,k,k)

(f) -[A2M(RJ-l,k-l)]Tr(R,k,k)

- AM(RJ - 1,/c- 1)A7Y(R,k - l,k- 1)

- AMiR,j,k)ATT(R,k,k)

2

-MiRJ, k)A2TTiR, k - \,k - 1)   RdR

K I Crl/3    if/- < 1,

" I Cr if r > 1.

The remainder of the proof consists of showing that the conditions in the

hypotheses of Theorem (1) correspond to the terms on the left-hand side of (f)

being dominated by Cr1/3 if r < 1, and Cr if r > 1.

As an example of the method of establishing the required inequalities,

consider

/=f°C      2      \D2M{R,j,k)\2\TriR,k,k)\2RdR.
0     j,k = — co

Suppose 0 < r < 1. Let q be an integer > 1 such that 2"<?+1r~1/2 < 1

< 2-« + 2r-'/2. Define A(s) = {(/?, A:): 0 < fl < oo, A: is an integer,

s</?+|/<|<2s}. Then we may decompose / as

(oo co a, CO        \

2/ 2     +    2   / 2
77 = 77 -^(0,00)   *=-«> n=_?+i-/«e(0,oo)   k=-col

s.t.(R,k)eA(.2-"r-'/2) sA.(R,k)<=A (2V~ '/2)

00

•   2   |/)2M(/?,/,/v)| |Tr(.R,A-,/<)|2aR^= /, + /2.
y-oo
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Note that if n > q, then (R, k) G v4(2~"r~1/2) implies k = 0. A computation

shows that \TT(R, k, k)\ < Cr2/3(R2 + k2) if r < 1. This, combined with the

hypothesis of Theorem (1) for a = 2, A = 2, implies that

2-n+lr-l/2 OO

J 2    \D2M(R,j,0)\ \Tr(R,0,0)\2RdR < C2~2n+Sx'\
2   "r     ' j= - x

and hence that

/, < 2 C2-2n+4r'/3< Cr'/3.
n = q

Similarly, if n > - q + 1 (i.e. 1/2 < 2"r^1/2), the above estimate of

7/ (/?, A:, k) combined with the hypothesis of Theorem (1) for a = 2, A = 3

implies that

f 2 2    |Z>2M(fl,//<)| ]7V (R,k,k)\2RdR< C23" + 2r'/3.

s.t.(/?,7V)e^(2"7-'/2)

The quantity on the left side of this inequality is also dominated by C2~"r1/2,

as can be checked by noting that \Tr (R, k, k)\ < C and using the hypothesis

of Theorem (1) for a = 2, A = 3. Combining the last two estimates gives

I2< cl      2      23" + 2r'/3 +  f 2-"r'/2| < Cr'/3.
\n=-q+l n=0 /

Thus, we have shown that / = 7, + I2 < Crl/3 if r < 1. The case when r > 1

is proved in the same manner.

Similar arguments using the following estimates prove the required inequal-

ities for the other terms on the left side of (f).

(^+^K<«H<c{>/'(«"+n
rs|7c| if k ¥= 0,

\ATr(R, k, k)\< C   |*|/ (R2 + k2)     if * * - 1, 0,

_rs ifk = 0,

rs,

\A2Trr(R, k, k)\ < C   1/ (R2 + k2) ifk¥=-l,0, 1,

r2/3exp( - r2/37?2)     if k * - 1, 0, 1 and r < 1.

In the above inequalities, 8 = \ if r < 1 and 8 = 1 if r > 1.

Theorem (2) may be proved by the same arguments used to prove Theorem

(1); details will be omitted.
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4. Applications. The Laplace operator, V2, on M (2) is given by

A computation shows that the multiplier

|0 if/* A:

corresponds to the differential operator - V2. We are led to define the

fractional Laplace operator on M(2) to be the multiplier operator defined by

{ 0 if/ * k

for real X. This multiplier satisfies the hypotheses of Theorem (1) and since it

is diagonal, the induced multiplier operator is selfadjoint, so that we may

conclude that the fractional Laplace operator on LP(M(2)) is bounded for

1 < p < oo and is of weak-type 1:1.

Next, we illustrate how the preceding work can be used to transfer basic

results on three-dimensional Euclidean space to M (2). Consider the Riesz

kernels

rj(xx, x2, x3) = tt-2Xj(x2x + x2 + x2)    ,       / = 1, 2, 3.

Set r(xx, x2, x3) = r,(x„ x2, x3) + ir2{xx, x2, x3). Let p be the function on

R2 X T induced from r by periodizing with respect to x3: p(x,, x2, xp)

= '2?--o0r(xl,x2,t + 2vk), i.e.

co _,

p(Re'9,^) = TT-2    2    Re"(R2+ ^ + 2irk)2)    .
k = — co

The multiplier on R2 X. T defined by p is

Tp{Rew,j) = TT'2Rew(R2+j2)~W2= M{Rew,j).

This multiplier is a Hormander multiplier on R2 X T. Applying Corollary (3)

to this multiplier shows that the matrix MiR) with/, k entry

M(R,j, k) = (277)"' C MiRe'9, k)e~i(k-J)e d0
•' — it

= ltr-2RiR2+ k2)"W2     ifk=j-l,

[ 0 otherwise

is a Hormander multiplier on M(2). Clearly the transpose of MiR) is also a

Hormander multiplier on M(2). Thus M(R) defines a bounded multiplier

operator on LpiM(2)), 1 < p < oo, which is of weak-type 1:1.

Another method of obtaining this result is to note that the multiplier

operator induced by M(R,j, k) on M(2) is defined by the M(2) convolution

operator with kernel piRe'9, >//). Further, it is not hard to check that if

k(Re'9,   xp)   is   a   set   function   on   R2 X  T  with   the   property   that
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e*k(Reil>, \P) = k(Rei(e+i\ \b), then k defines a bounded left convolution

operator on LP(M(2)) if and only if k defines a bounded convolution

operator on LP(R2 X T), 1 < p < oo. The LP boundedness of the multiplier

operator on A7(2) then follows from the Hormander theorem on R2 X T and

these observations.
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