Multipliers on the rigid motions of the plane and their relations to multipliers on direct products
HTML articles powered by AMS MathViewer
- by Richard L. Rubin
- Proc. Amer. Math. Soc. 59 (1976), 89-98
- DOI: https://doi.org/10.1090/S0002-9939-1976-0454523-6
- PDF | Request permission
Abstract:
Hörmander multiplier theorems on $M(2)$ and ${R^2} \times T$ are developed. The relations between these theorems are studied. Applications to fractional Laplace operators and ${R^3}$ Riesz transforms are given.References
- Ronald R. Coifman and Miguel de Guzmán, Singular integrals and multipliers on homogeneous spaces, Rev. Un. Mat. Argentina 25 (1970/71), 137–143. MR 320644
- Ronald R. Coifman and Guido Weiss, Analyse harmonique non-commutative sur certains espaces homogènes, Lecture Notes in Mathematics, Vol. 242, Springer-Verlag, Berlin-New York, 1971 (French). Étude de certaines intégrales singulières. MR 0499948
- Lars Hörmander, Estimates for translation invariant operators in $L^{p}$ spaces, Acta Math. 104 (1960), 93–140. MR 121655, DOI 10.1007/BF02547187
- Richard L. Rubin, Harmonic analysis on the group of rigid motions of the Euclidean plane, Studia Math. 62 (1978), no. 2, 125–141. MR 481939, DOI 10.4064/sm-62-2-125-142
Bibliographic Information
- © Copyright 1976 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 59 (1976), 89-98
- MSC: Primary 43A80; Secondary 43A22
- DOI: https://doi.org/10.1090/S0002-9939-1976-0454523-6
- MathSciNet review: 0454523