THE Q-TOPOLOGY, WHYBURN TYPE FILTERS
AND THE CLUSTER SET MAP

ROBERT A. HERRMANN

ABSTRACT. We use nonstandard topology and the Q-topology to characterize normal, almost-normal, regular, almost-regular, semiregular spaces. The cluster [resp. \(\theta \)-cluster] set relation is used to characterize regular, almost-regular [resp. strongly-regular] spaces. The Whyburn [resp. Dickman] filter bases are characterized and it is shown that the cluster [resp. \(\theta \)-cluster] set relation restricted to the domain of the Whyburn [resp. Dickman] filter bases is an essentially continuous [resp. strongly \(\theta \)-continuous] map iff the space is Hausdorff [resp. Urysohn].

1. Introduction. This paper has three major purposes. First, we investigate the Q-topology on an enlargement \(*X \) of a topological space \(X \) as introduced by Robinson [9] and show, among other results, that the Q-closure of a point or set monad is the \(\theta \)-monad [6]. Moreover, using the Q-topology and the point or set monad, we characterize regular, semiregular, almost-regular [10], normal and almost-normal [11] spaces by means of a collection of highly analogous statements.

Fuller [4] defines a topology on the set of all clustering filters on \(X \) and using the lower semifinite topology shows that the cluster set map is continuous iff \(X \) is locally compact. Employing a different topology on the set of all converging filters, Wyler [13] shows that the convergence of a filter on a Hausdorff space \(X \) is a continuous map iff \(X \) is regular. We use that standard part [resp. \(\theta \)-standard part] relation, which can be considered the cluster [resp. \(\theta \)-cluster] set map, and show that, from the nonstandard viewpoint, regular [resp. almost-regular, strongly-regular] spaces are characterizable by similar statements involving the inverse of this relation. Further, by considering the near-standard [resp. \(\theta \)-near-standard] points and employing the induced Q-topology, we show that the cluster [resp. \(\theta \)-cluster] set relation is a continuous map iff \(X \) is Hausdorff [resp. Urysohn].

In [12], Whyburn introduces the concept of a filter base being directed toward \(A \subset X \) and uses this concept to characterize perfect (not necessarily continuous) maps. Dickman [2], [3] modifies Whyburn's definition and introduces the concept of a filter base almost-converging to \(A \subset X \). Among our final results, we show that a filter base is directed toward [resp. almost-converges to] \(A \subset X \) iff its nucleus satisfies a nonstandard condition analo-
gous to the criterion for compactness [resp. quasi-\(H\)-closedness].

Throughout this paper, we let \(\mathcal{M} = (\mathcal{U}, \in, \text{pr}, \text{ap}) \) be the standard set-theoretic structure constructed by Machover and Hirschfeld [8] and, as usual, assume that all standard objects are elements of \(\mathcal{U} \). Even though some of the results only require \(\ast\mathcal{M} = (\ast\mathcal{U}, \ast\in, \ast\text{pr}, \ast\text{ap}) \) to be an enlargement, it is convenient to assume that the extension \(\ast\mathcal{M} \) is \(\kappa \)-saturated, where \(\kappa \) is any cardinal larger than the cardinality of \(\mathcal{M} \). In the usual manner [7], [8], [9] we let \(\mathcal{E} \) be a first order language with equality and the usual assortment of abbreviations which formally describes \(\mathcal{M} \). Also we do not distinguish between the formal constant, relation and operator symbols in \(\mathcal{E} \) and the corresponding objects in \(\mathcal{M} \). We assume that the reader is familiar with the concepts and methods associated with nonstandard topology [7], [8], [9]. We use much of the notation found in [8].

2. The \(Q\)-topology. For a topological space \((X, \tau)\), the \(Q\)-topology on \(\ast X\), denoted by \(\mathcal{Q}\), is the topology generated by \((\ast A | A \in \ast \tau)\) as a base. Recall that if \(A \in \ast \mathcal{U}\), then \(\ast A = \{ p | p \in \ast \mathcal{U} \} \land \{ p \in \ast A \}\). If \(A \in \ast \tau\), then \(\ast A\) is said to be \(\ast\)-open. If \(B \in \mathcal{Q}\), then \(B\) is said to be \(Q\)-open, etc. We let \(\mu(p)\) and \(\mu(A)\) be the point and set monad [9] and define

\[
\mu_\alpha(p) = \bigcap\{ (\text{int}_X G) | p \in G \in \tau\},
\]

\[
\mu_\theta(A) = \bigcap\{ (\text{cl}_X G) | A \subset G \in \tau\},
\]

\[
\mu_\alpha(p) = \bigcap\{ (\text{int}_X G) | p \in G \in \tau\},
\]

\[
\mu_\theta(A) = \bigcap\{ (\text{cl}_X G) | A \subset G \in \tau\}.
\]

to be the \(\alpha\) and \(\theta\) point and set monads respectively.

For many properties of the \(Q\)-topology not mentioned in this paper, we refer the reader to [1], [9]. In particular, Button [1] has shown that the \(Q\)-topology preserves much of the structure of \(\tau\) and, indeed, \((\ast X, \mathcal{Q})\) is discrete iff \((X, \tau)\) is discrete.

Theorem 2.1. If nonempty \(\mathcal{G} \subset \tau\), then \(\text{Nuc}\mathcal{G}\) is \(Q\)-open.

Proof. If \(\mathcal{G}\) does not have the finite intersection property, then \(\text{Nuc}\mathcal{G} = \emptyset\). Assume that \(\mathcal{G}\) has the finite intersection property and let \(\mathcal{G}\) be the open filter generated by \(\mathcal{G}\). Luxemburg's Theorem 2.1.6 [7] holds for any filter on any meet-semilattice of sets [5]. Hence \(\text{Nuc}\mathcal{G} = \bigcup\{ (\ast E | E \in \mathcal{G}) \land (\ast E \subset \text{Nuc}\mathcal{G})\}\).

Corollary 2.1.1. For each \(p \in X\) and \(A \subset X\), the monads \(\mu(p), \mu(A), \mu_\alpha(p), \mu_\theta(A)\) are \(Q\)-open.

Remark. In [1], Button obtains 2.1 by using a considerably more elaborate technique.

Clearly, if \(\mathcal{G}\) is an open filter on \(X\), then every infinitesimal \(\ast\)-element in \(\mathcal{G}\) is \(\ast\)-open. Indeed, we have a converse to this assertion.

Theorem 2.2. Let \(\mathcal{F}\) be a filter base on \(X\). If each infinitesimal \(\ast\)-element in \(\mathcal{F}\) is \(\ast\)-open, then \(\text{Nuc}\mathcal{F} = \text{Nuc}\mathcal{G}\), where \(\mathcal{G} = \{ G | G \in \tau \land (G \in \mathcal{F})\}\).
Proof. Since \mathcal{F} is a filter base, then there exists an infinitesimal $*\text{element in } \mathcal{F}$. Thus, it follows by transfer that $\mathcal{F} = \{ G \mid G \in *\mathcal{F} \} \neq \emptyset$. Clearly, $\text{Nuc}_\mathcal{F} \subset \text{Nuc}_G$. Now let $F \in \mathcal{F}$ and $G = \{ E \mid E \in *\tau \} \land \{ E \in \mathcal{F} \} \land \{ *E \subset *F \}$. Using saturation and Luxemburg's Theorem 2.7.3(c) [7], which also holds for filter bases, we have that there exists an open $G \in \mathcal{F}$ such that $G \subset F$. Consequently, $\text{Nuc}_G \subset \text{Nuc}_\mathcal{F}$ and the result follows.

Clearly, for $A \subset X$, $*(\text{cl}_X A)$ is $*$-closed. Hence $\mu_\theta(p)$ and $\mu_\theta(A)$ are Q-closed. Of course, $\text{ns}(X) = \bigcup \{ (\mu(p) \mid p \in X) \}$ is Q-open.

Theorem 2.3. For each $p \in X$ [resp. $A \subset X$], the monad $\mu_\theta(p) = \text{cl}_X (\mu(p))$ [resp. $\mu_\theta(A) = \text{cl}_X (\mu(A))$].

Proof. We only show the first assertion, the second being similar. Let $p \in X$. Since $\mu(p) \subset \mu_\theta(p)$, then $\text{cl}_X (\mu(p)) \subset \mu_\theta(p)$. Assume that there exists $q \in \mu_\theta(p)$ and $q \notin \text{cl}_X (\mu(p))$. Now there exists $E \in *\tau$ such that $q \in *E$ and $*E \cap \mu(p) = \emptyset$. Saturation implies that there exists $G \in \tau$ such that $p \in G$ and $*E \cap *G = \emptyset$. Hence $*E \cap *(\text{cl}_X G) = \emptyset$ by transfer. However, $q \in \mu_\theta(p)$ implies $*E \cap *(\text{cl}_X G) \neq \emptyset$ and the result follows.

Since X is regular [resp. almost-regular [10]] iff $\mu(p) = \mu_\theta(p)$ [resp. $\mu_\theta(p) = \mu_\theta(p)$] for each $p \in X$ [6], then it follows that a space X is regular [resp. almost-regular] iff $\mu(p)$ [resp. $\mu_\theta(p)$] is Q-closed for each $p \in X$. Also, it is easy to show that a space X is normal [resp. almost-normal [11]] iff $\mu(A) = \mu_\theta(A)$ [resp. $\mu_\theta(A) = \mu_\theta(A)$] for each closed $A \subset X$. Hence a space X is normal [resp. almost-normal] iff $\mu(A)$ [resp. $\mu_\theta(A)$] is Q-closed for each closed $A \subset X$.

Remark. Button [1], using a different technique, also gives the Q-open and Q-closed characterizations for regular and normal spaces.

In [6], we give some nonstandard characterizations for semiregular spaces. Using the Q-topology, we obtain another characterization. Let τ_5 be the topology generated by the set of all regular-open subsets in X and \mathcal{F}_5 its associated Q-topology.

Theorem 2.4. A space (X, τ) is semiregular iff $\mu(p) \in \mathcal{F}_5$ for each $p \in X$.

Proof. For the necessity, let (X, τ) be semiregular. Then $\mathcal{F}_5 = \mathcal{F}$. Thus applying 2.1.1, we have that $\mu(p) \in \mathcal{F}_5$ for each $p \in X$.

For the sufficiency, let $\mu(p) \in \mathcal{F}_5$. Since $*\tau_5$ is a base for \mathcal{F}_5 and $p \in \mu(p)$, then it follows that there exists $E \in *\tau_5$ such that $p \in *E \subset \mu(p) \subset \mu_\theta(p)$. Let G be any open set such that $p \in G$. Then the sentence in \mathcal{M},

$$\exists x [x \in \tau_5] \land [p \in X] \land [x \subset G],$$

holds in \mathcal{M} by transfer. Consequently, since we are dealing with filter bases, we have that $\mu_\theta(p) \subset \mu(p)$. Thus $\mu(p) = \mu_\theta(p)$. This implies that (X, τ) is semiregular [6].

3. The cluster set map. As is well known if \mathcal{F} is a filter base on X, then $\text{St} [\text{Nuc}_\mathcal{F}]$ is the cluster set for \mathcal{F}, where for $W \subset *X$, $\text{St} [W] = \{ p \mid \text{p} \in X \land \{ \text{p} \land W \neq \emptyset \} \}$. Recall that a set $W \subset *X$ is nuclear if there exists $\mathcal{F} \subset \mathcal{P}(X)$ such that $W = \text{Nuc}_\mathcal{F}$. Hence "St" restricted to $\text{ns}(X)$ is essentially the cluster set map for filter bases on X. Of course, in this case "St" may be considered a map from $\text{ns}(X)$ into X if X is Hausdorff. A space (X, τ) is
called strongly-regular if for closed \(F \subseteq X \) and \(p \in X - F \) there exist \(G, H \in \tau \) such that \(p \in G, F \subseteq H \) and \(\text{cl}_X G \cap \text{cl}_X H = \emptyset \). Observe that completely regular implies strongly-regular implies regular.

Definition 3.1. For each \(W \subseteq X \), let \(\text{St}_\theta[W] = \{ p | [p \in X] \land [\mu_\theta(p) \cap W \neq \emptyset] \} \) and \(\text{ns}_\theta(X) = \bigcup \{ \mu_\theta(p) | p \in X \} \). Notice that if \(\mathcal{F} \) is a filter base, then \(\text{St}_\theta[\text{Nuc}\mathcal{F}] \) is the set of all \(\theta \)-cluster points [3] for \(\mathcal{F} \). Also, "\(\text{St}_\theta \)" is a map from \(\text{ns}_\theta(X) \) into \(X \) iff \(X \) is Urysohn [6] (i.e. for distinct \(p, q \in X \) there exist neighborhoods \(N_p, N_q \) such that \(\text{cl}_X N_p \cap \text{cl}_X N_q = \emptyset \)).

Theorem 3.1. Let \((X, \tau) \) be Hausdorff and \(\text{St} : \text{ns}(X) \to X \). Then:

(i) \(X \) is regular iff \(\text{St}_\tau^{-1}[F] = \mu(F) \cap \text{ns}(X) \) for each closed \(F \subseteq X \).

(ii) \(X \) is almost-regular iff \(\text{St}_\tau^{-1}[F] = \mu_a(F) \cap \text{ns}(X) \) for each regular-closed \(F \subseteq X \).

Proof. (i) For the necessity, let closed \(F \subseteq X \) and \(q \in \text{St}_\tau^{-1}[F] \). Then \(\text{St}(q) = p \) implies that \(q \in \mu(p) \) and \(\mu(p) \cap \text{cl}_X F \neq \emptyset \). Hence \(p \in F \). Thus \(\mu(p) \subseteq *G \) for each open \(G \supseteq F \). Consequently, \(q \in \mu(F) \cap \text{ns}(X) \) implies that \(\text{St}_\tau^{-1}[F] \subseteq \mu(F) \cap \text{ns}(X) \). Now assume that \(X \) is regular and \(q \in \mu(F) \cap \text{ns}(X) \). Then \(q \in \mu(p) \) for some \(p \in X \). Assume that \(p \notin F \). Then there exist disjoint \(G, H \in \tau \) such that \(p \in G \) and \(F \subseteq H \). Thus \(\mu(p) \cap *H = \emptyset \). Consequently, \(\text{St}_\tau[\mu(p)] = p \in F \) and the necessity follows.

For the sufficiency, let closed \(F \subseteq X \) and \(p \notin F \). Then \(\text{St}_\tau^{-1}(p) = \mu(p) \subseteq \text{ns}(X) \) and \(\text{St}_\tau^{-1}[F] = \mu(F) \cap \text{ns}(X) \). Observe that \(\mu(p) \cap *F = \emptyset \). Hence

\[
\emptyset = \text{St}_\tau^{-1}[F \cap \{ p \}] = \text{St}_\tau^{-1}[F] \cap \text{St}_\tau^{-1}(p) = \mu(F) \cap \text{ns}(X) \cap \mu(p) = \mu(F) \cap \mu(p).
\]

Thus there exist disjoint \(G, H \in \tau \) such that \(p \in G \) and \(F \subseteq H \).

(ii) Observe that if \(F \subseteq X \) is regular-closed in \(X \), then

\[
\text{St}_\tau^{-1}[F] \subseteq \mu(F) \cap \text{ns}(X) \subseteq \mu_a(F) \cap \text{ns}(X).
\]

The result follows in the same manner as in (i) since the operator "\(\text{int}_X \text{cl}_X \)" preserves disjointness for open sets.

Clearly, a strongly-regular \(T_1 \) space is Urysohn. Of course, since a strongly-regular space is regular, then in a strongly-regular space \(X, F \subseteq X \) is closed iff \(\text{St}_\theta[*F] = F \). The following result is obtained in the same manner as is Theorem 3.1.

Theorem 3.2. Let \(X \) be Urysohn. Then \(X \) is strongly-regular iff \(\text{St}_\theta^{-1}[F] = \mu_\theta(F) \cap \text{ns}_\theta(X) \) for each closed \(F \subseteq X \).

4. Whyburn and Dickman filter bases. In [12], Whyburn says that a filter base \(\mathcal{F} \) on \(X \) is directed toward \(A \subseteq X \) if every filter base \(\mathcal{G} \) stronger than \(\mathcal{F} \) has a cluster point in \(A \). Dickman [3] modifies Whyburn's definition and says that a filter base \(\mathcal{F} \) on \(X \) is almost-convergent to \(A \subseteq X \) if every filter base \(\mathcal{G} \) stronger than \(\mathcal{F} \) has an almost-cluster point in \(A \) (i.e. \(\text{St}_\theta[\text{Nuc}\mathcal{G}] \cap A \neq \emptyset \)). We call a filter base \(\mathcal{F} \) a Whyburn [resp. Dickman] filter base if \(\mathcal{F} \) is directed toward [resp. almost-convergent to] some \(A \subseteq X \).
Definition 4.1. A set $W \subset \mathcal{X}$ is A-compact [resp. θA-compact] for $A \subset X$ if $W \subset \bigcup \{\mu(p) | p \in A\}$ [resp. $\{\mu_\theta(p) | p \in A\}$].

Theorem 4.1. Let \mathcal{F} be a filter base on X. Then the following statements are equivalent.

(i) For each open cover C of A, we have that $\text{Nuc}\mathcal{F} \subset \bigcup \{*G|G \in C\}$ [resp. $\{*(\text{cl}_X G)|G \in C\}$].

(ii) $\text{Nuc}\mathcal{F}$ is A-compact [resp. θA-compact].

(iii) For each open cover C of A there exists a finite subcover \mathbb{G}, such that $\text{Nuc}\mathcal{F} \subset \bigcup \{*D|D \in \mathbb{G}\}$ [resp. $\{*(\text{cl}_X D)|D \in \mathbb{G}\}$].

(iv) For each open cover C of A there exists a finite subcover \mathbb{G} and an $F \in \mathcal{F}$, such that $F \subset \bigcup \{D|D \in \mathbb{G}\}$ [resp. $\{\text{cl}_X D|D \in \mathbb{G}\}$].

Proof. We only prove the first conclusions since the second follow in a similar manner.

(i) \rightarrow (ii). Assume that $q \in \text{Nuc}\mathcal{F}$ and $q \notin \bigcup \{\mu(p) | p \in A\}$. Then for each $p \in A$ there exists some open neighborhood G such that $q \notin *G$. Thus $C = \{G[G \in \tau] \land [q \notin *G]\}$ is an open cover of A such that $\text{Nuc}\mathcal{F} \notin \bigcup \{*G|G \in C\}$.

(ii) \rightarrow (iii). Assume that there exists some open cover C of A such that for no finite $\mathbb{G} \subset C$ do we have that $\text{Nuc}\mathcal{F} \subset \bigcup \{*D|D \in \mathbb{G}\}$.

(iii) \rightarrow (iv). Simply let E be the infinitesimal element which is contained in $\text{Nuc}\mathcal{F}$.

(iv) \rightarrow (i) is obvious.

Corollary 4.1.1. A filter base \mathcal{F} on X is Whyburn [resp. Dickman] iff $\text{Nuc}\mathcal{F} \subset \text{ns} (*X)$ [resp. $\text{Nuc}\mathcal{F} \subset \text{ns}_\theta (*X)$].

Corollary 4.1.2. A filter base \mathcal{F} on X is directed toward [resp. almost-converges to] $A \subset X$ iff $\text{Nuc}\mathcal{F}$ is A-compact [resp. θA-compact].

Remark. The reader may wish to compare Theorem 4.1 with the known
results that a set $A \subseteq X$ is compact [resp. quasi-H-closed relative to X] iff *A is A-compact [9] [resp. θA-compact [6]].

Recall that a map $f: X \to Y$ is strongly θ-continuous at $p \in X$ if for every open neighborhood N of $f(p)$ there exists some open neighborhood G of p such that $f[\text{cl}_X G] \subseteq N$. Since in the Q-topology $\mu(p)$ is open and $\text{cl}_X (\mu(p)) = \mu_\theta(p)$ for each $p \in X$, then the next result follows easily and compares nicely with the results of Fuller [4] and Wyler [13].

Theorem 4.2. Let $\text{ns} (^*X)$ [resp. $\text{ns}_\theta (^*X)$] carry the topology induced by the Q-topology on *X. Then $\text{St}: \text{ns} (^*X) \to X$ [resp. $\text{St}_\theta: \text{ns}_\theta (^*X) \to X$] is a continuous [resp. strongly θ-continuous] map iff X is Hausdorff [resp. Urysohn].

References

2. R. Dickman, α-perfect mappings and almost-convergence (preprint).
6. ———, The θ and α-monads in general topology (to appear).

Department of Mathematics, U.S. Naval Academy, Annapolis, Maryland 21402