A note on Walsh-Fourier series
HTML articles powered by AMS MathViewer
- by Wo Sang Young PDF
- Proc. Amer. Math. Soc. 59 (1976), 305-310 Request permission
Abstract:
It is shown that the double sequence $\{ {\lambda _{mn}}\}$ with ${\lambda _{mn}} = 1$ if $n \leqslant m$ and $0$ otherwise is an ${L^p}$ multiplier for the Walsh system in two dimensions only if $p = 2$. This result is then used to show that the one-dimensional trigonometric system and the Walsh system are nonequivalent bases of the Banach space ${L^p}[0,\;1]$, and hence have different ${L^p}$ multipliers, $1 < p < \infty ,\;p \ne 2$.References
- Charles Fefferman, On the convergence of multiple Fourier series, Bull. Amer. Math. Soc. 77 (1971), 744–745. MR 435724, DOI 10.1090/S0002-9904-1971-12793-3
- N. J. Fine, On the Walsh functions, Trans. Amer. Math. Soc. 65 (1949), 372–414. MR 32833, DOI 10.1090/S0002-9947-1949-0032833-2
- John E. Gilbert, Maximal theorems for some orthogonal series. I, Trans. Amer. Math. Soc. 145 (1969), 495–515. MR 252941, DOI 10.1090/S0002-9947-1969-0252941-3 R. E. A. C. Paley, A remarkable series of orthogonal functions. I, Proc. London Math. Soc. 34 (1932), 241-264.
- Ivan Singer, Bases in Banach spaces. I, Die Grundlehren der mathematischen Wissenschaften, Band 154, Springer-Verlag, New York-Berlin, 1970. MR 0298399
- A. Zygmund, Trigonometric series: Vols. I, II, Cambridge University Press, London-New York, 1968. Second edition, reprinted with corrections and some additions. MR 0236587
Additional Information
- © Copyright 1976 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 59 (1976), 305-310
- MSC: Primary 42A56
- DOI: https://doi.org/10.1090/S0002-9939-1976-0410247-2
- MathSciNet review: 0410247