Inert extensions of Krull domains
HTML articles powered by AMS MathViewer
- by Douglas L. Costa and Jon L. Johnson
- Proc. Amer. Math. Soc. 59 (1976), 189-194
- DOI: https://doi.org/10.1090/S0002-9939-1976-0412173-1
- PDF | Request permission
Abstract:
Let $A \subseteq B$ be integral domains with $B$ an inert extension of a Krull domain $A$. Let $\mathcal {P}(A)$ be the set of height one primes of $A$, and let $T = { \cap _{p \in \mathcal {P}(A)}}B \otimes {A_p}$. When each ${B_p} = B \otimes {A_p}$ is a UFD, a necessary and sufficient condition for $T$ to be a Krull domain is obtained. If $T$ is a Krull domain and each ${B_p}$ is a UFD, then the divisor class groups of $A$ and $T$ are isomorphic under the natural mapping. These results are applied to $A \subseteq B$ when $B$ is a symmetric algebra over $A$ and when $B$ is locally a polynomial ring over $A$.References
- M. F. Atiyah and I. G. Macdonald, Introduction to commutative algebra, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1969. MR 0242802
- Jacob Barshay, Graded algebras of powers of ideals generated by $A$-sequences, J. Algebra 25 (1973), 90â99. MR 332748, DOI 10.1016/0021-8693(73)90076-8
- P. M. Cohn, Bezout rings and their subrings, Proc. Cambridge Philos. Soc. 64 (1968), 251â264. MR 222065, DOI 10.1017/s0305004100042791 D. L. Costa, Symmetric algebras and retracts, Dissertation, Univ. of Kansas, 1974.
- Douglas L. Costa, Unique factorization in modules and symmetric algebras, Trans. Amer. Math. Soc. 224 (1976), no. 2, 267â280 (1977). MR 422250, DOI 10.1090/S0002-9947-1976-0422250-1
- Paul Eakin and James Silver, Rings which are almost polynomial rings, Trans. Amer. Math. Soc. 174 (1972), 425â449. MR 309924, DOI 10.1090/S0002-9947-1972-0309924-4
- Robert M. Fossum, The divisor class group of a Krull domain, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 74, Springer-Verlag, New York-Heidelberg, 1973. MR 0382254
- Robert Gilmer, Multiplicative ideal theory, Pure and Applied Mathematics, No. 12, Marcel Dekker, Inc., New York, 1972. MR 0427289
- Irving Kaplansky, Commutative rings, Allyn and Bacon, Inc., Boston, Mass., 1970. MR 0254021
- A. Micali, P. Salmon, and P. Samuel, IntĂ©gritĂ© et factorialitĂ© des algĂšbres symĂ©triques, Proc. Fourth Brazilian Math. Colloq. (1963) (Portuguese), Conselho Nacional de Pesquisas, SĂŁo Paulo, 1965, pp. 61â76 (French). MR 0207741
- Anne-Marie Nicolas, Modules factoriels, Bull. Sci. Math. (2) 95 (1971), 33â52 (French). MR 284426
- Anne-Marie Nicolas, Extensions factorielles et modules factorables, Bull. Sci. Math. (2) 98 (1974), no. 2, 117â143 (French). MR 424788
- Pierre Samuel, Anneaux graduĂ©s factoriels et modules rĂ©flexifs, Bull. Soc. Math. France 92 (1964), 237â249 (French). MR 186702
- P. Samuel, Lectures on unique factorization domains, Tata Institute of Fundamental Research Lectures on Mathematics, No. 30, Tata Institute of Fundamental Research, Bombay, 1964. Notes by M. Pavman Murthy. MR 0214579
Bibliographic Information
- © Copyright 1976 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 59 (1976), 189-194
- MSC: Primary 13F05
- DOI: https://doi.org/10.1090/S0002-9939-1976-0412173-1
- MathSciNet review: 0412173