A commutativity theorem for rings
HTML articles powered by AMS MathViewer
- by M. Chacron
- Proc. Amer. Math. Soc. 59 (1976), 211-216
- DOI: https://doi.org/10.1090/S0002-9939-1976-0414636-1
- PDF | Request permission
Abstract:
Let $R$ be any associative ring. Suppose that for every pair $({a_1},{a_2}) \in R \times R$ there exists a pair $({p_1},{p_2})$ such that the elements ${a_i} - a_i^2{p_i}({a_i})$ commute, where the ${p_i}$’s are polynomials over the integers with one (central) indeterminate. It is shown here that the nilpotent elements of $R$ form a commutative ideal $N$, and that the factor ring $R/N$ is commutative. This result is obtained by the use of the concept of cohypercenter of a ring $R$, which concept parallels the hypercenter of a ring.References
- M. Chacron and G. Thierrin, An algebraic dependence over the quasi-centre, Ann. Mat. Pura Appl. (4) 110 (1976), 1–14. MR 422351, DOI 10.1007/BF02418000
- M. Chacron, On a theorem of Herstein, Canadian J. Math. 21 (1969), 1348–1353. MR 262295, DOI 10.4153/CJM-1969-148-5
- I. N. Herstein, The structure of a certain class of rings, Amer. J. Math. 75 (1953), 864–871. MR 58580, DOI 10.2307/2372554
- I. N. Herstein, On the hypercenter of a ring, J. Algebra 36 (1975), no. 1, 151–157. MR 371962, DOI 10.1016/0021-8693(75)90161-1
- I. N. Herstein, A commutativity theorem, J. Algebra 38 (1976), no. 1, 112–118. MR 396687, DOI 10.1016/0021-8693(76)90248-9
Bibliographic Information
- © Copyright 1976 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 59 (1976), 211-216
- MSC: Primary 16A70
- DOI: https://doi.org/10.1090/S0002-9939-1976-0414636-1
- MathSciNet review: 0414636