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STRICTLY CONVEX NORMED LINEAR SPACES
S. GUDDER AND D. STRAWTHER

ABSTRACT. A new characterization of strict convexity for c})mplex normed
linear spaces in terms of duality maps is given. It is then shown that many of
the latest characterizations of strict convexity follow as simple corollaries.

1. Introduction. The concept of a strictly convex (s.c.) normed linear space
has been extremely fertile. For example, strict convexity has proved useful in
studies of the geometry of Banach spaces [5], [11], [18], orthogonality [11],
semi-inner-products [1], [9], [10], [14], [15], [20] and nonlinear operators [6],
[7], [17]. The most well-known characterizations of s.c. normed linear spaces
are the following [8], [11], [18].

M If x + y|| =|x|| + ||¥|, x # O, then y = cx for some ¢ > 0.

(2) Every element of the unit sphere is an extreme point of the unit ball.

(3) Every nonzero continuous linear functional attains a maximum on at
most one point of the unit sphere.

In this paper we give another characterization of s.c. normed linear spaces
in terms of duality maps. This result can be used to unify and prove many of
the other latest characterizations. For example, as simple corollaries of our
result we obtain a characterization due to Menaker [15] (and mentioned by
Palmer [16]), a characterization stated (but not proved) by Berkson [1], a
characterization due to Torrance [20], a characterization half of which was
proved by Husain and Malviya [10] and finally. a generalization of
Petryshyn’s characterization [7], [17], [19] to complex spaces.

2. A new characterization. Let X be a complex normed linear space with
unit sphere S. In this section we shall be concerned with a duality map I:
X — 2* defined as follows:

I(x) = {f € X*f(x) =]/ I*]}-

It is easy to see that x = 0 if and only if I(x) = X*. Also notice that for
¢ >0, I(x)=1(cx) = cl(x). We now give our main result.

THEOREM 1. The following statements are equivalent. (a) X is s.c. (b)
I(y) C I(x) for x # 0 implies y = cx for some ¢ > 0. (c) I(y) = I(x) implies
y = c¢x for some ¢ > 0.

PROOF. (a) = (b) Suppose x # 0, I(y) C I(x) and y # cx for some ¢ > 0.
Now y # 0 since otherwise I (x) = I(y) = X* so x = 0, which is a contradic-
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tion. By the Hahn-Banach theorem there is an f € X* such that || f] = I and
f(») =|7|l- Then f € I(y) C I1(x). Now y/|[y| # x/|lx|| and f(3/||»|) =
SO/ 1xD =|IA- Tt follows from (3) that X is not s.c. (b)=(c) is trivial.
(c) = (a). Suppose X is not s.c. Then by (2) there is a nontrivial line segment
L in S. Let w, x, y, z be distinct elements of L which satisfy y = (x + w)/2,

x=(y+ z)/2. Let f € I(y). Now [ S| <A I =11])- Also
|f() = 20N [=1S(x = )] =[S (=w)| <[IA] [w[I=]1A-

Hence f(x) = | f] and f € I(x). Thus /(y) C I(x) and, by similar reasoning,
if f & I(x) then f € I(y) so I(x) = I(y). Furthermore, y # c¢x for some
¢ > 0, since otherwise w = dx for some real number d. Then, since |w| =|x|
= 1 we would have w = *+ x. Butsince w # x, w = — x and y = 0 which is
a contradiction.

3. Other characterizations. We now use Theorem 1 to prove other character-
izations of strict convexity. Let R * denote the nonnegative real numbers. A
semipositive function ¢ is a map ¢: R* — R™* which satisfies () = 0 if and
only if A = 0. A pseudo-gauge function is a strictly increasing semipositive
function. Pseudo-gauge functions generalize gauge functions as defined in [7]
where, in addition, ¢ is required to be continuous and satisfy ¢(A) — oo as
A — oo. If ¢ is a semipositive function, we define a duality map J,: X — 2¥°
as follows:

Jo(x) = {f € X*:f(x) = A x> [171= ¢(Ix])}-

If ¢ is the function ¢(A) = A, we call J, the normalized duality map and denote
it by J. The map J was introduced by Beurling and Livingston [2] and studied
by many others [3], [4], [6], [7], [12], [13], [17], [21]. Notice that if ¢ is a
semipositive function, then I(x) = U, a/ (x) for all x € X.

THEOREM 2. Let ¢ and  be semipositive functions. If X is s.c. then
Jo(x) N Jy (y) # @ implies y = cx for some ¢ > 0. If there exists a > 0 such
that ¢(a) = Y(a) and J,(y) = J (x) implies y = cx for some ¢ > O, then X is
s.c.

PrROOF. Suppose J,(x) N J,(y) # @ and y # cx for ¢ > 0. Let f €
Jo(x) N Jy(¥). Now f ## 0, since otherwise x = y = 0. Also x, y # 0, since
otherwise || f]| = ¥(||»|) = ¢(|x|) = 0. Furthermore, y/||y| # x/|x| and
f(y/||y||) = f(x/||x||) =|f]- By (3), X is not s.c. Next, assume ¢(a) = Y(a)
for some a >0 and J,(y) = J,(x) implies y = cx for some ¢ > 0. Now
suppose I(y) = I(x). If either x or y is zero then so is the other. Suppose x,
y#0.1f f € Jy(ay/|y|) then f € I(y) = I(x) = I(ax/|x|). Hence |f]
= y(a) = ¢(a) = ¢(||lax/||x|| | so f € J,(ax/|x|). Therefore, J (ay/||»|)
C J,(ax/||x|)) and by symmetry these two sets are equal. Hence there exists a
¢ > 0 such that y = cx. By Theorem 1, X is s.c.

COROLLARY 3. Let ¢ be a pseudo-gauge function. Then the following state-
ments are equivalent. (a) X is s.c. (b) J(x) N J,(y) = @ whenever x # y. (¢)
Js(¥) C J,(x) whenever x # y. (d) J,(y) # J,(x) whenever x # y.
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PROOF. (a) = (b) Suppose X is s.c. and J,(x) N J,(y) # @. Then by
Theorem 2, y = cx with ¢ > 0. If f &€ J,(x)n J,(y) then
o(|y|) =|IAl = #(|x|p- If x =0, then y = 0. If x # 0, since ¢ is injective,
|7l =|x||- Hence ¢ =1 and x =y. (b)=1(c) and (c) = (d) are trivial.
(d) = (a) follows from Theorem 2.

COROLLARY 4 (MENAKER). X is s.c. iff J(x) N J(y) = & whenever x # y.

COROLLARY 5 (BERKSON). Let [.-, -] be a consistent semi-inner-product on X.
Then X is s.c. iff whenever [x, y] =|x| ||»|l, x # O, then y = cx for some
c>0.

PROOF. Suppose X is s.c. and [x, y] =||x]| | ¥, x # 0. Then

(el + DI x + 200> e+ o0 ] = (el + DI
If y = 0, we are finished; otherwise ||x|| + | »|| =|x + »|. It follows from (1)
that y = c¢x for some ¢ > 0. Conversely, suppose X is not s.c. Then by
Theorem 1 there are elements x # 0, y # cx, with ¢ > 0, such that 7(y)
C I(x). Since y # 0, y # cx with ¢ > 0. Let f(z) = [z, y] for every z € X.
Then f € J(y) and hence f € I(x). Thus [x, ] = f(x) = || x| = x| I¥]-

COROLLARY 6 (TORRANCE). Let [+, ‘] be a consistent semi-inner-product on
X. Then X is s.c. iff whenever ||y + z|| <||y| and [z, y] = O, then z = 0.

ProoF. The corollary is equivalent to the following more convenient
statement. X is s.c. iff whenever [x, y] = ||y||2 x # y, then ||x| >|»|- Suppose
X is s.c., x # y and [x, y] =| || If |x|| =||»| then by Corollary 5, y = cx,
¢ > 0 which implies x = y, a contradiction. But ||x| ||»|| > [x, »] =||y||2 so
x|l >||¥||- The converse proceeds as in Corollary 5.

Let [+, -] be a consistent semi-inner-product on X. We say that a sequence
X, converges weakly in the second argument to x if foranyy € X, [y, x,] > [y,
x] as n — oo. Husain and Malviya [10] have shown that if X is s.c. then weak
limits in the second argument are unique. We next show that a converse
holds, thus giving another characterization of strict convexity.

COROLLARY 7. X is s.c. iff weak limits in the second argument are unique for
every consistent semi-inner-product on X.

Proor. This corollary is equivalent to the following statement. X is s.c. iff
for every consistent semi-inner-product [z, x] = [z, y] for every z € X implies
x = y. Suppose X is s.c. and [z, x] = [z, y] = f(z) for all z € X. Then
f € J(x) N J(y) and by Corollary 4, x = y. Conversely, if X is not s.c., then
by Corollary 4, there exist x # y and an f € J(x) N J(y). Define a consis-
tent semi-inner-product as follows: [u, v] = f,(u) where f, € J(v), v # x, y,
f. = f, = f Then for every z € X, [z, x] = f,(2) = f,(2) = [z, y].

Let ¢ be a semipositive function. We say that J, is strictly monotone if for
every x # y and every f € J,(x), g € J,(») we have Re(f — g)(x — y) > 0.
This generalizes the usual concept of strict monotonicity in real spaces which
has been extensively studied in the literature [3], [7], [17], [19], [21]. Our next
result generalizes Petryshyn’s characterization [7], [17], [19] to complex spaces.
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COROLLARY 8. Let ¢ be a pseudo-gauge function. Then X is s.c. iff J, is
strictly monotone.

Proor. If f € J (x), g € J,(»), then the following identity holds:
Re(f = g)(x = ») =|l/l |x]| = Re f(») — Reg(x) +| g| |»|
=LA 1eDUx= v ] + LA 171 - Ref(»)]
+ L&l x| - Re g(x)].
Since each term in square brackets is nonnegative, Re(f — g)(x — y) > 0 and

Re(f - g)(x — ») = 0 iff Ref(»)=|/] [»]. Reg(x)=|g| |x| and
(LA = 1 &Ddx) = 1wl = 0. If Re f(y) = || A [|»]| then

[Im £ ) PP+ | AP = [m () ]+ [Re () =[S <IAP NI

It follows that Re f(y) =] Iy Hf f() =||f] ||¥| and, similarly,
Re g(x) = &l |Ix| iff g(x) = | || ||%||- Furthermore, if || f] =| ||, then o(||x|))
=/l =8l = ¢(||»||) and, since ¢ is strictly increasing, x|l =]l»||- Hence
(A1 = N&IQe] = [yIp = O iff |/ = g] and [lx| =[] Using these facts
and Corollary 3 we obtain: X is not s.c. iff there exists x ¥ y and an f € X*
such that f € Jy(x) 0 Jo(w) #ESC) = (A lx ] SO = A ] (A = (x|
= ¢(||y|)s x # y iff there exists x # y, f € J (x), g € J,(v) with Re (f — g)
(x — ») = 0iff J, is not strictly monotone.
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