## Strictly convex normed linear spaces

HTML articles powered by AMS MathViewer

- by S. Gudder and D. Strawther PDF
- Proc. Amer. Math. Soc.
**59**(1976), 263-267 Request permission

## Abstract:

A new characterization of strict convexity for complex normed linear spaces in terms of duality maps is given. It is then shown that many of the latest characterizations of strict convexity follow as simple corollaries.## References

- Earl Berkson,
*Some types of Banach spaces, Hermitian operators, and Bade functionals*, Trans. Amer. Math. Soc.**116**(1965), 376–385. MR**187100**, DOI 10.1090/S0002-9947-1965-0187100-2 - Arne Beurling and A. E. Livingston,
*A theorem on duality mappings in Banach spaces*, Ark. Mat.**4**(1962), 405–411 (1962). MR**145320**, DOI 10.1007/BF02591622 - Felix E. Browder,
*Multi-valued monotone nonlinear mappings and duality mappings in Banach spaces*, Trans. Amer. Math. Soc.**118**(1965), 338–351. MR**180884**, DOI 10.1090/S0002-9947-1965-0180884-9 - Felix E. Browder,
*On a theorem of Beurling and Livingston*, Canadian J. Math.**17**(1965), 367–372. MR**176320**, DOI 10.4153/CJM-1965-037-2 - James A. Clarkson,
*Uniformly convex spaces*, Trans. Amer. Math. Soc.**40**(1936), no. 3, 396–414. MR**1501880**, DOI 10.1090/S0002-9947-1936-1501880-4
D. deFigueiredo, - Charles R. DePrima and W. V. Petryshyn,
*Remarks on strict monotonicity and surjectivity properties of duality mappings defined on real normed linear spaces*, Math. Z.**123**(1971), 49–55. MR**308865**, DOI 10.1007/BF01113932
N. Dunford and J. T. Schwartz, - J. R. Giles,
*Classes of semi-inner-product spaces*, Trans. Amer. Math. Soc.**129**(1967), 436–446. MR**217574**, DOI 10.1090/S0002-9947-1967-0217574-1 - T. Husain and B. D. Malviya,
*On semi-inner product spaces. I*, Colloq. Math.**24**(1971/72), 235–240. MR**320720**, DOI 10.4064/cm-24-2-235-240 - Robert C. James,
*Orthogonality and linear functionals in normed linear spaces*, Trans. Amer. Math. Soc.**61**(1947), 265–292. MR**21241**, DOI 10.1090/S0002-9947-1947-0021241-4 - Tosio Kato,
*Nonlinear semigroups and evolution equations*, J. Math. Soc. Japan**19**(1967), 508–520. MR**226230**, DOI 10.2969/jmsj/01940508 - J.-L. Lions,
*Quelques méthodes de résolution des problèmes aux limites non linéaires*, Dunod, Paris; Gauthier-Villars, Paris, 1969 (French). MR**0259693** - G. Lumer,
*Semi-inner-product spaces*, Trans. Amer. Math. Soc.**100**(1961), 29–43. MR**133024**, DOI 10.1090/S0002-9947-1961-0133024-2
M. Menaker, - W. V. Petryshyn,
*A characterization of strict convexity of Banach spaces and other uses of duality mappings*, J. Functional Analysis**6**(1970), 282–291. MR**0287289**, DOI 10.1016/0022-1236(70)90061-3
V. Smul’jan, - D. Strawther and S. Gudder,
*A characterization of strictly convex Banach spaces*, Proc. Amer. Math. Soc.**47**(1975), 268. MR**355542**, DOI 10.1090/S0002-9939-1975-0355542-X - Ellen Torrance,
*Strictly convex spaces via semi-inner-product space orthogonality*, Proc. Amer. Math. Soc.**26**(1970), 108–110. MR**261328**, DOI 10.1090/S0002-9939-1970-0261328-2 - M. M. Vaĭnberg,
*Equations with nonlinear accretive and monotone operators and Galerkin-Petrov approximations*, Dokl. Akad. Nauk SSSR**197**(1971), 754–757 (Russian). MR**0282273**

*Topics in nonlinear functional analysis*, Lecture Notes, #48, University of Maryland, 1967.

*Linear operators*. 1:

*General theory*, Pure and Appl. Math., vol. 7, Interscience, New York, 1958. MR

**22**#8302.

*Semi-inner-product spaces*, Thesis, University of Maryland, 1969. 16. T. Palmer,

*Unbounded normal operators on Banach spaces*, MRC Technical Summary Report #785, 1967.

*On some geometrical properties of the unit sphere in spaces of the type*(B), Mat. Sb.

**48**(1938), 90-94.

## Additional Information

- © Copyright 1976 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**59**(1976), 263-267 - MSC: Primary 46B05
- DOI: https://doi.org/10.1090/S0002-9939-1976-0417758-4
- MathSciNet review: 0417758