Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A multiplier theorem for $SU(n)$


Author: Norman J. Weiss
Journal: Proc. Amer. Math. Soc. 59 (1976), 366-370
MSC: Primary 43A22; Secondary 22E30
DOI: https://doi.org/10.1090/S0002-9939-1976-0420141-9
MathSciNet review: 0420141
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $G = {\text {SU}}(n)$, let $\mathfrak {g}$ be its Lie algebra and let $m$ be a function on $\mathfrak {g}$, invariant under the adjoint action of $G$, which is continuous at the points of $\hat G$ (which can be imbedded in $\mathfrak {g}$). If $1 \leqslant p < 2[1 - {(n + 2)^{ - 1}}]$ and $m$ is a multiplier for the ${\operatorname {Ad} _G}$-invariant ${L^p}$ functions on $\mathfrak {g}$, then the restriction of a translate of $m$ to $\hat G$ is a multiplier for the central ${L^p}$ functions on $G$.


References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 43A22, 22E30

Retrieve articles in all journals with MSC: 43A22, 22E30


Additional Information

Keywords: <IMG WIDTH="29" HEIGHT="20" ALIGN="BOTTOM" BORDER="0" SRC="images/img1.gif" ALT="${L^p}$"> multiplier, invariant function
Article copyright: © Copyright 1976 American Mathematical Society