Skip to Main Content

Proceedings of the American Mathematical Society

Published by the American Mathematical Society, the Proceedings of the American Mathematical Society (PROC) is devoted to research articles of the highest quality in all areas of pure and applied mathematics.

ISSN 1088-6826 (online) ISSN 0002-9939 (print)

The 2020 MCQ for Proceedings of the American Mathematical Society is 0.85.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

On topological methods in homological algebra
HTML articles powered by AMS MathViewer

by David A. Edwards and Harold M. Hastings PDF
Proc. Amer. Math. Soc. 59 (1976), 389-393 Request permission

Abstract:

We give an appropriate extension of the concept of “tower of surjections” to arbitrary inverse systems. We introduce a natural closed model structure (in the sense of D. Quillen) on the category of pro-(Simplicial Abelian Groups) and interpret our condition as the definition of fibrant object.
References
  • M. Artin and B. Mazur, Etale homotopy, Lecture Notes in Mathematics, No. 100, Springer-Verlag, Berlin-New York, 1969. MR 0245577
  • A. K. Bousfield and D. M. Kan, Homotopy limits, completions and localizations, Lecture Notes in Mathematics, Vol. 304, Springer-Verlag, Berlin-New York, 1972. MR 0365573
  • David A. Edwards, Étale homotopy theory and shape, Algebraic and geometrical methods in topology (Conf. Topological Methods in Algebraic Topology, State Univ. New York, Binghamton, N.Y., 1973), Lecture Notes in Math., Vol. 428, Springer, Berlin, 1974, pp. 58–107. MR 0375295
  • David A. Edwards and Ross Geoghegan, Stability theorems in shape and pro-homotopy, Trans. Amer. Math. Soc. 222 (1976), 389–403. MR 423347, DOI 10.1090/S0002-9947-1976-0423347-2
  • David A. Edwards and Harold M. Hastings, Why the $R$-completion works, General Topology and Appl. 7 (1977), no. 2, 179–184. MR 454966
  • —, On homotopy inverse limits and the vanishing of ${\lim ^s}$, S.U.N.Y. at Binghamton (preprint). —, ÄŚech and Steenrod homotopy theory, with applications to geometric topology, Lecture Notes in Math., Springer-Verlag, Berlin and New York (to appear). A. Grothendieck, Technique de descente et thĂ©orèmes d’existence en gĂ©omĂ©trie algĂ©brique, SĂ©minaire Bourbaki, 1959-1960, ExposĂ©s 190, 195 (mimeographed notes). H. M. Hastings, Homotopy theory of pro-spaces. I, II, S.U.N.Y. at Binghamton, 1974 (preprint).
  • C. U. Jensen, Les foncteurs dĂ©rivĂ©s de $\underleftarrow {\mmlToken {mi}{lim}}$ et leurs applications en thĂ©orie des modules, Lecture Notes in Mathematics, Vol. 254, Springer-Verlag, Berlin-New York, 1972. MR 0407091
  • James Keesling, The ÄŚech homology of compact connected abelian topological groups with applications to shape theory, Geometric topology (Proc. Conf., Park City, Utah, 1974) Lecture Notes in Math., Vol. 438, Springer, Berlin, 1975, pp. 325–331. MR 0405344
  • James Keesling, On the Whitehead theorem in shape theory, Fund. Math. 92 (1976), no. 3, 247–253. MR 431156, DOI 10.4064/fm-92-3-247-253
  • J. Peter May, Simplicial objects in algebraic topology, Van Nostrand Mathematical Studies, No. 11, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1967. MR 0222892
  • Daniel G. Quillen, Homotopical algebra, Lecture Notes in Mathematics, No. 43, Springer-Verlag, Berlin-New York, 1967. MR 0223432
  • Jan-Erik Roos, Sur les foncteurs dĂ©rivĂ©s de $\underleftarrow \lim$. Applications, C. R. Acad. Sci. Paris 252 (1961), 3702–3704 (French). MR 132091
  • Jean-Louis Verdier, Équivalence essentielle des systèmes projectifs, C. R. Acad. Sci. Paris 261 (1965), 4950–4953 (French). MR 190209
  • Z. Z. Yeh, Thesis, Princeton, N. J., 1959.
Similar Articles
  • Retrieve articles in Proceedings of the American Mathematical Society with MSC: 18G25, 55J99
  • Retrieve articles in all journals with MSC: 18G25, 55J99
Additional Information
  • © Copyright 1976 American Mathematical Society
  • Journal: Proc. Amer. Math. Soc. 59 (1976), 389-393
  • MSC: Primary 18G25; Secondary 55J99
  • DOI: https://doi.org/10.1090/S0002-9939-1976-0424906-9
  • MathSciNet review: 0424906