The orbit space of a sphere by an action of $Z_{p^{s}}$
HTML articles powered by AMS MathViewer
- by Stephen J. Willson
- Proc. Amer. Math. Soc. 59 (1976), 361-365
- DOI: https://doi.org/10.1090/S0002-9939-1976-0428328-6
- PDF | Request permission
Abstract:
Let $X$ be a finite ${\text {CW}}$ complex with the ${Z_{{p^r}}}$ homology of an $n$-sphere. Suppose ${Z_{{p^s}}}$ acts cellularly on $X$. The homology of the orbit space $X/{Z_{{p^s}}}$ with coefficients ${Z_{{p^r}}}$ is computed.References
- Armand Borel, Seminar on transformation groups, Annals of Mathematics Studies, No. 46, Princeton University Press, Princeton, N.J., 1960. With contributions by G. Bredon, E. E. Floyd, D. Montgomery, R. Palais. MR 0116341
- Glen E. Bredon, Introduction to compact transformation groups, Pure and Applied Mathematics, Vol. 46, Academic Press, New York-London, 1972. MR 0413144
- N. E. Steenrod, Cohomology operations, Annals of Mathematics Studies, No. 50, Princeton University Press, Princeton, N.J., 1962. Lectures by N. E. Steenrod written and revised by D. B. A. Epstein. MR 0145525
- Stephen J. Willson, Equivariant homology theories on $G$-complexes, Trans. Amer. Math. Soc. 212 (1975), 155–171. MR 377859, DOI 10.1090/S0002-9947-1975-0377859-X
Bibliographic Information
- © Copyright 1976 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 59 (1976), 361-365
- MSC: Primary 55C35; Secondary 57E25
- DOI: https://doi.org/10.1090/S0002-9939-1976-0428328-6
- MathSciNet review: 0428328