A NOTE ON REGULAR METHODS OF SUMMABILITY AND THE BANACH-SAKS PROPERTY

P. ERDÖS AND M. MAGIDOR

Abstract. Using the Galvin-Prikry partition theorem from set theory it is proved that every bounded sequence in a Banach space has a subsequence such that either every subsequence of which is summable or no subsequence of which is summable.

The infinite matrix \(\{a_{ij}\}_{i \in \omega, j \in \omega} \) (\(\omega \) is the set of natural numbers) is called a regular method of summability if given a sequence \(\langle e_i \rangle_{i \in \omega} \) of elements of a Banach space \(B \), converging in norm to \(e \), then the sequence \(e'_i = \sum_{j=0}^{\infty} a_{ij} e_j \) converges also to \(e \). The sequence \(\langle e_i \rangle_{i \in \omega} \) is called summable with respect to \(\langle a_{ij} \rangle_{i \in \omega, j \in \omega} \) if \(e'_i = \sum_{j=0}^{\infty} a_{ij} e_j \) converges in norm. (See [2, p. 75] for reference.)

It is well known [2] that \(\langle a_{ij} \rangle_{i \in \omega, j \in \omega} \) is a regular method of summability if and only if

(a) \(\text{l.u.b.} \sum_{j=0}^{\infty} |a_{ij}| < M < \infty \),
(b) \(\lim_{i \to \infty} a_{ij} = 0 \) for every \(j \),
(c) \(\lim_{i \to \infty} \sum_{j=0}^{\infty} a_{ij} = 1 \).

In this note we prove:

Theorem. Let \(\langle e_i \rangle_{i \in \omega} \) be a bounded sequence of elements in a Banach space \(B \), and \(\langle a_{ij} \rangle_{i \in \omega, j \in \omega} \) a regular method of summability; then there exists a subsequence of \(\langle e_i \rangle_{i \in \omega} \), \(\langle e_{ik} \rangle_{k \in \omega} \) such that:

(a) every subsequence of \(\langle e_{ik} \rangle_{k \in \omega} \) is summable with respect to \(\langle a_{ij} \rangle_{i \in \omega, j \in \omega} \), each being summed to the same limit; or

(b) no subsequence of \(\langle e_{ik} \rangle_{k \in \omega} \) is summable with respect to \(\langle a_{ij} \rangle_{i \in \omega, j \in \omega} \).

Proof. Let \(P(\omega) \) be the set of all infinite subsets of \(\omega \). There exists a natural topology on \(P(\omega) \) generated by the subbasis \(\{A_n \}_{n \in \omega} \cup \{B_n \}_{n \in \omega} \) where

\[A_n = \{ p \mid p \in P(\omega), n \in p \}, \quad B_n = \{ p \mid p \in P(\omega), n \notin p \}. \]

Define a partition of \(P(\omega) \) into two Borel sets:

\[A = \{ p \mid \langle e_i \rangle_{i \in p} \text{ is summable w.r.t. } \langle a_{ij} \rangle_{i \in \omega, j \in \omega} \}, \]
\[B = P(\omega) - A \]
We prove that A is a Borel subset of $P(\omega)$. Let

$$B_{e,m,n} = \left\{ p \mid \sum_{j=0}^{\infty} a_{nj} \cdot e_{kj} - \sum_{j=0}^{\infty} a_{mj} e_{kj} \right\} < \varepsilon$$

where k_j is a monotone enumeration of p.

$B_{e,m,n}$ is open in our topology on $P(\omega)$, because if $p \in B_{e,m,n}$, pick ε' such that

$$\left\| \sum_{j=0}^{\infty} a_{mj} e_{kj} - \sum_{j=0}^{\infty} a_{nj} e_{kj} \right\| < \varepsilon'< \varepsilon.$$

Let J be large enough such that

$$T\left(\sum_{j=1}^{\infty} |a_{mj}| + \sum_{j=1}^{\infty} |a_{nj}| \right) < \varepsilon - \varepsilon'$$

where T is a bound for $\|e_i\|$. (T exists because $\langle a_{ij} \rangle_{i \in \omega, j \in \omega}$ is a regular method of summability.)

The set $C = \{ q \mid q \in P(\omega), q \cap \{ l \mid l < J \} = p \cap \{ l \mid l < J \} \}$ is an open subset of $P(\omega)$. $p \in C$ and $C \subseteq B_{e,m,n}$. This last inclusion is true since if $q \in C$ and l_j is a monotone enumeration of q, then $l_j = k_j$ for $j < J$. Hence,

$$\left\| \sum_{j=0}^{\infty} a_{mj} e_{lj} - \sum_{j=0}^{\infty} a_{nj} e_j \right\| < \varepsilon' + T \cdot \left(\sum_{j=1}^{\infty} |a_{mj}| + \sum_{j=1}^{\infty} |a_{nj}| \right) + \varepsilon - \varepsilon'$$

Thus every element of $B_{e,m,n}$ has an open neighborhood included in $B_{e,m,n}$. Hence $B_{e,m,n}$ is open.

The set A is $\bigcap_k \bigcup_N \bigcap_{m,n>N} B_{l/k,m,n}$. ($A$ is the set of those p such that $\sum_{j=0}^{\infty} a_j e_{kj}$ is a Cauchy sequence if k_j is a monotone enumeration of p.) By a theorem of F. Galvin and K. Prikry [3] there is $q \in P(\omega)$ such that either

(I) for every $t \subseteq q$, $t \in P(\omega) \Rightarrow t \in A$, or

(II) for every $t \subseteq q$, $t \in P(\omega) \Rightarrow t \in B$.

For the sequence $\langle e_i \rangle_{i \in q}$ either (b) holds (in case (II)) or in case (I) we shall indicate how to pick a subsequence of it for which (a) holds. If we assume that (I) holds, then every subsequence of $\langle e_i \rangle_{i \in q}$ is summable to a limit which lies
in the subspace spanned by $\langle e_i \rangle_{i \in \mathbb{N}}$. Call it B', which is of course separable. For every $n \in \mathbb{N}$, $n \neq 0$, let $\langle A^m \mid m \in \mathbb{N} \rangle$ be a family of open balls of radius $1/n$ covering B'. By induction we get a sequence $\cdots \subseteq q_3 \subseteq q_2 \subseteq q_1 \subseteq q$ such that either (A) every subsequence of $\langle e_i \rangle_{i \in q^1}$ is summable to a limit in A_k^1 or (B) every subsequence of $\langle e_i \rangle_{i \in q^1}$ is summable to a limit which is outside A_k^1. (We can get the q^1_{k+1} from q_k by again using the Galvin-Prikry result, noting as before that the partition of $P(q_k)$ is Borel.) Clearly for some k_1 we get (A) to hold. Let q^1_{∞} be elements of the diagonal sequence of the natural enumerations of q^1_k. Now get $\cdots \subseteq q^2_3 \subseteq q^2_2 \subseteq q^1_1 \subseteq q^1_{\infty}$ such that either (A): every subsequence of $\langle e_i \rangle_{i \in q^2_k}$ is summable to a limit in A_k^2 or (B): every subsequence of $\langle e_i \rangle_{i \in q^2_k}$ is summable to a limit outside A_k^2. Again we get k_2 for which (A) holds. q^2_3, q^2_2, etc., and k_1, k_2, k_3, ... are defined as before. Let t be the set of elements of the diagonal sequence of the sequence generated by the q^k_n. Every subsequence of $\langle e_i \rangle_{i \in t}$ is summable to a limit which is in A_k^n, for every n hence to a limit in A_k^n, which contains at most one point. Hence the sequence $\langle e_i \rangle_{i \in \mathbb{N}}$ satisfies (a).

REMARKS. (1) By using the theorem countably many times (using the fact that finitely many changes in a sequence do not influence its summability), we can get the conclusion to hold simultaneously for a countable sequence of regular summability methods such that the limit for those of them for which (I) holds is the same.

(2) A Banach space is said to have the Banach-Saks property with respect to the regular method of summability $\langle a_y \rangle_{i \in \mathbb{N}}$ if every bounded sequence has a summable subsequence. (See [1]. The problem solved by this note is due to Louis Sucheston.) As a corollary to the theorem we get: If B has the Banach-Saks property with respect to the regular method of summability $\langle a_y \rangle_{i \in \mathbb{N}, j \in \mathbb{N}}$, then every bounded sequence has a subsequence such that each of its subsequences is summable with respect to $\langle a_y \rangle_{i \in \mathbb{N}, j \in \mathbb{N}}$.

REFERENCES

Department of Mathematics, University of Colorado, Boulder, Colorado 80302

Mathematics Institute, Hungarian Academy of Sciences, Budapest, Hungary (Current address of P. Erdős)

Department of Mathematics, University of California, Berkeley, California 94720

Current address: (M. Magidor): Department of Mathematics, University of the Negev, Beer-Sheva, Israel