AN APPLICATION OF THEOREMS OF SCHUR AND ALBERT

THOMAS L. MARKHAM

DEDICATED TO ALFRED T. BRAUER

Abstract. Suppose Π_n is the cone of $n \times n$ positive semidefinite matrices, and $\text{int}(\Pi_n)$ is the set of positive definite matrices. Theorems of Schur and Albert are applied to obtain some elements of Π_n and $\text{int}(\Pi_n)$. Then an analogue of Albert's theorem is given for M-matrices, and finally a generalization is given for matrices of class P.

I. Introduction. Suppose Π_n is the cone of $n \times n$ positive semidefinite matrices over the complex field. The interior of Π_n, denoted $\text{int}(\Pi_n)$, is the set of $n \times n$ positive definite matrices.

If A and B are arbitrary matrices of the same size, the Hadamard product of A and B is the matrix $A*B$ whose (i,j) entry is $a_{ij}b_{ij}$. A rather comprehensive account of this product is given in [9].

J. Schur proved the following theorem.

Theorem 1.1 [8]. If $A, B \in \Pi_n$, then $A*B \in \Pi_n$. Further, if $A, B \in \text{int}(\Pi_n)$, then $A*B \in \text{int}(\Pi_n)$.

This theorem is easily proved by noting $A*B$ is a principal submatrix of the tensor product of A and B.

Now suppose M is a matrix partitioned in the form

\begin{equation}
M = \begin{pmatrix} A & B \\ C & D \end{pmatrix}.
\end{equation}

In [2], the generalized Schur complement of A in M is defined as

\begin{equation}
M|A = D - CA^+B,
\end{equation}

where A^+ is the Moore-Penrose inverse of A. Similarly, we define

\begin{equation}
M|D = A - BD^+C.
\end{equation}

If M given in (1.1) is hermitian and is partitioned symmetrically, then $C = B^*$. For this case, Albert [1] has proved the following theorem, which was generalized in [2, Theorem 2].

Theorem 1.2. Suppose M is hermitian and partitioned symmetrically in (1.1). Then $M \in \Pi_n$ if and only if $A \in \Pi_k$, $M|A \in \Pi_{n-k}$ and the null space of A is
contained in the null space of B^* (i.e. $N(A) \subseteq N(B^*)$). Further, $M \in \text{int}(\Pi_n)$ if and only if $A \in \text{int}(\Pi_k)$, $M|A \in \text{int}(\Pi_{n-k})$, and $M|D \in \text{int}(\Pi_k)$.

We shall utilize Theorems 1.1 and 1.2 to obtain some new results on positive semidefinite matrices.

II. Some elements of Π_n. As in §1, $N(A)$ will denote the null space of the matrix A.

Theorem 2. Suppose each of A, B, C, D is in Π_n, and $N(A) \subseteq N(B)$, $N(C) \subseteq N(D)$. Then

$$BA^*B + DC^*D - (B^*D)(A^*C)^+ (B^*D) \in \Pi_n.$$

Proof. Let

$$M = \begin{pmatrix} A & B \\ B & BA^*B \end{pmatrix}, \quad N = \begin{pmatrix} C & D \\ D & DC^*D \end{pmatrix}.$$

Both M and N are in Π_{2n} by Albert’s theorem. Then applying Schur’s theorem, we get

$$(2.1) \quad M \ast N = \begin{pmatrix} A \ast C & B \ast D \\ B \ast D & (BA^*B) \ast (DC^*D) \end{pmatrix} \in \Pi_{2n}.$$

Now we reapply Theorem 1.2 to (2.1) and obtain $(BA^*B) \ast (DC^*D) - (B^*D)(A^*C)^+ (B^*D) \in \Pi_n$. □

Note that as a consequence of Theorem 1.2, using the assumptions of the above theorem, we obtain that $N(A \ast C) \subseteq N(B \ast D)^*$.

One can obtain readily now a number of corollaries; we shall mention a few of these.

Corollary 2.1. If $A, C \in \text{int}(\Pi_n)$, then $A^{-1} \ast C^{-1} - (A \ast C)^{-1} \in \Pi_n$.

Proof. Let $B = I_n = D$ in Theorem 2, and use the fact that $A^* = A^{-1}$ if A is invertible.

Corollary 2.2. Suppose $A, B \in \text{int}(\Pi_n)$; $C, D \in \Pi_n$. Then $(A \ast B^{-1} + C) - (A^{-1} \ast B + D)^{-1} \in \Pi_n$.

Proof. As in the proof of Theorem 2, let

$$M = \begin{pmatrix} A & I \\ I & A^{-1} \end{pmatrix}, \quad N = \begin{pmatrix} B^{-1} & I \\ I & B \end{pmatrix}$$

and put

$$P = \begin{pmatrix} C & 0 \\ 0 & D \end{pmatrix}.$$

Then $M \ast N + P \in \Pi_{2n}$, and the result follows by the technique used previously.

From Corollary 2.2, one obtains immediately the result that if $C, D \in \Pi_n$, then $(I + C) - (I + D)^{-1} \in \Pi_n$. Simply choose $A = B = I_n$ above.

Corollary 2.3. Let $A \in \text{int}(\Pi_n)$. Then
THEOREMS OF SCHUR AND ALBERT

\[A \ast A - (A \ast I)(A^{-1} \ast A + I)^{-1}(A \ast I) \]

is in \(\Pi_n \).

Proof. Let
\[
M = \begin{pmatrix} A & I \\ I & A^{-1} \end{pmatrix}, \quad N = \begin{pmatrix} A & A \\ A & A \end{pmatrix}, \quad \text{and} \quad P = \begin{pmatrix} 0 & I_n \\ 0 & 1_n \end{pmatrix}.
\]

Then \(M \ast N + P \in \Pi_{2n} \), and the result follows as in the previous corollary.

In fact, even more is known concerning Corollary 2.3. In [9, Corollary 4.3, p. 236], Styan shows that \(A \ast A - 2(A \ast I)(A^{-1} \ast A + I)^{-1}(A \ast I) \in \Pi_n \) using a technique based on probabilistic methods.

We also would like to point out that Theorem 2 is an analogue for the Schur product of Theorem 5 of [2]. There it is shown that if \(A, C \in \Pi_n \), and if \(B, D \) are chosen so that \(N(A) \subseteq N(B^*) \), \(N(C) \subseteq N(D^*) \), then
\[
B^*A + B + D^*C + D - (B + D)^*(A + C) + (B + D) \in \Pi_n.
\]

From Corollary 2.2, if \(A, B \in \text{int}(\Pi_n) \), then it follows that \(A \ast B - (A^{-1} \ast B^{-1})^{-1} \in \Pi_n \). There is an analogue of this result for matrix addition, i.e. \(A + B - (A^{-1} + B^{-1})^{-1} \in \text{int}(\Pi_n) \). This is a consequence of the previously mentioned result of Carlson, Haynsworth and Markham [2]; we offer a simple proof of this fact.

Let
\[
M = \begin{pmatrix} A & \frac{1}{2}I \\ \frac{1}{2} & A^{-1} \end{pmatrix} \quad \text{and} \quad N = \begin{pmatrix} B & \frac{1}{2}I \\ \frac{1}{2}I & B^{-1} \end{pmatrix}.
\]

By Theorem 1.2, both \(M \) and \(N \) belong to \(\text{int}(\Pi_{2n}) \). Now
\[
M + N = \begin{pmatrix} A + B & I \\ I & A^{-1} + B^{-1} \end{pmatrix} \in \text{int}(\Pi_{2n}).
\]

Apply Theorem 1.2 again. Then \(M + N[A^{-1} + B^{-1}] \in \text{int}(\Pi_n) \). But \(M + N[A^{-1} + B^{-1}] = A + B - (A^{-1} + B^{-1})^{-1} \).

III. \(M \)-matrices. Suppose \(A \) is a square matrix over the real field. Let \(Z_n \) denote the class of \(n \times n \) matrices whose off-diagonal entries are nonpositive. Assume \(A \in Z_n \). \(A \) is called an \(M \)-matrix, see [6], if and only if \(A \) is invertible and \(A^{-1} \) is a nonnegative matrix (each entry is nonnegative). Let
\[
G = \begin{pmatrix} A & B \\ C & D \end{pmatrix}.
\]

where \(A \) and \(D \) are square matrices of order \(k \) and \(n - k \), respectively.

If \(G \) is an \(M \)-matrix, then it is well known that \(A \) and \(D \) are \(M \)-matrices. Fan [5] proved that if \(D \) has order 1, then \(G|D \) is an \(M \)-matrix. Crabtree [3, Lemma 1] extended this result to \(D \) of arbitrary order. Watford [10], in turn, proved this result for generalized \(M \)-matrices with respect to a cone.
These results are useful in obtaining an analogue of Albert's Theorem 1.2 for \(M \)-matrices.

Theorem 3. Suppose \(G \) is an \(n \times n \) matrix partitioned as in (3.1), and \(G \) is in \(Z_n \). Then \(G \) is an \(M \)-matrix if and only if \(A, D, G|A, \) and \(G|D \) are \(M \)-matrices.

Proof. If \(G \) is an \(M \)-matrix, then \(A, D, G|A, \) and \(G|D \) are \(M \)-matrices by the comments preceding Theorem 3.

Now suppose \(A, D, G|A, G|D \) are \(M \)-matrices. Let

\[
\bar{G} = \begin{bmatrix} (G|D)^{-1} & -A^{-1}B(G|A)^{-1} \\ -D^{-1}C(G|D)^{-1} & (G|A)^{-1} \end{bmatrix}.
\]

It is easy to verify \(G \cdot \bar{G} = I \), so \(G^{-1} \) exists. Further, \(G^{-1} \) is nonnegative since each of \(A^{-1}, D^{-1}, (G|A)^{-1}, \) and \((G|D)^{-1} \) is nonnegative, and \(B \) and \(C \) are nonpositive. Thus \(G \) is an \(M \)-matrix. \(\square \)

Theorem 3 offers a practical procedure for determining if a given matrix is an \(M \)-matrix.

Now we will take a closer look at Albert's theorem. First, we need some additional notation. If \(\alpha \) and \(\beta \) are strictly increasing sequences on \(\{1, 2, \ldots, n\} \) of the same length, then \(M(\alpha|\beta) \) will denote the minor of \(M \) with rows indexed by \(\alpha \) and columns indexed by \(\beta \). If \(\alpha = \beta \), then we write \(M(\alpha) \).

If \(M \) is partitioned as in (1.1), where \(A \) is nonsingular of order \(k \), then

\[
M|A = (e_{ij}), i, j = k + 1, \ldots, n,
\]

with

\[
e_y = \frac{M(1, 2, \ldots, k, i|1, 2, \ldots, k, j)}{M(1, 2, \ldots, k)} = \frac{M(1, 2, \ldots, k, i|1, 2, \ldots, k, j)}{\det(A)};
\]

see [4].

If \(M \) is hermitian, then \(M \) is positive definite if and only if the leading principal minors of \(M \) are positive. Hence we can rephrase Albert's theorem for this case.

Theorem 4. Suppose \(M \) is hermitian, and is partitioned symmetrically in (1.1). Then \(M \in \text{int}(\Pi_n) \) if and only if \(A \in \text{int}(\Pi_k) \) and \(M|A \in \text{int}(\Pi_{n-k}) \).

Proof. It is well known that if \(M \in \text{int}(\Pi_n) \), then \(A \) and \(M|A \) are positive definite.

Conversely, we need only show that the leading principal minors of \(M \) are positive. Consider an arbitrary minor, say \(M(1, \ldots, i) \). If \(i < k \), this minor is positive since it is a principal minor of \(A \). Assume \(i > k \). Then, using an identity of Sylvester [7, p. 101], we have

\[
M|A(k + 1, \ldots, i) = (\det(A))^{-1}M(1, \ldots, k + 1, \ldots, i).
\]

The result now follows. \(\square \)

If \(M \in Z \), then \(M \) is an \(M \)-matrix if and only if the leading principal
minors of M are positive. Thus, Theorem 3 could also be restated in the form of Theorem 4.

Definition [6]. Suppose M is an $n \times n$ matrix. Then M belongs to class P if and only if all principal minors of M are positive.

We can generalize Albert's theorem to class P in the following manner.

Theorem 5. Let M be partitioned as in (1.1), where the submatrix A has order 1. Then

$$(3.3) \quad M \in P \text{ if and only if } A \in P, M \mid A \in P, \text{ and } D \in P.$$

We omit the proof since the techniques are similar to those of Theorem 4.

Observe the following concerning Theorem 5. On the one hand, to see if $M \in P$, there are $2^n - 1$ principal minors to check. Applying the above result, we obtain a number and two matrices of order $n - 1$ to check the principal minors. Using this equivalence iteratively (to the right-hand side of (3.3)), there are $1 + 2 + \cdots + 2^n - 1$ numbers which must be verified to be positive. But $1 + 2 + \cdots + 2^n - 1 = 2^n - 1$ for n a positive integer, so, in fact, the same number of elements must be verified. The obvious advantage of the right-hand side of (3.3) lies in the reduction of the order of the matrices at each iteration.

It is possible to reduce the number of minors checked? For example, if M has leading positive principal minors, then M does not necessarily belong to class P. A simple example to illustrate is $M = \begin{pmatrix} 1 & 2 \\ 2 & 3 \end{pmatrix}$.

Does there exist an analogue to Theorem 3 for class P when M is partitioned as in (1.1), with A of order k? If M has order 2 or 3, the result holds. For larger orders, it need not hold. Consider

$$M = \begin{pmatrix} 1 & 1 & 1 & 0 \\ 1 & 2 & 0 & 1 \\ 2 & 3 & 1 & 1 \\ 3 & 5 & 1 & 2 \end{pmatrix} = \begin{pmatrix} A & B \\ C & D \end{pmatrix}.$$

Here A, $M \mid A$, D, and $M \mid D$ are all in class P, but $M(13)$ is zero.

We conclude with the following query. Suppose M is an $n \times n$ matrix. What is the minimal number of principal minors of M that must be positive in order that M belong to class P? Is it necessary to verify that all $2^n - 1$ principal minors, or related minors, are positive?

References

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

Department of Mathematics and Computer Science, University of South Carolina, Columbia, South Carolina 29208.