AN APPLICATION OF THEOREMS OF SCHUR AND ALBERT

THOMAS L. MARKHAM

DEDICATED TO ALFRED T. BRAUER

Abstract. Suppose \(\Pi_n \) is the cone of \(n \times n \) positive semidefinite matrices, and \(\text{int}(\Pi_n) \) is the set of positive definite matrices. Theorems of Schur and Albert are applied to obtain some elements of \(\Pi_n \) and \(\text{int}(\Pi_n) \). Then an analogue of Albert's theorem is given for \(M \)-matrices, and finally a generalization is given for matrices of class \(P \).

I. Introduction. Suppose \(\Pi_n \) is the cone of \(n \times n \) positive semidefinite matrices over the complex field. The interior of \(\Pi_n \), denoted \(\text{int}(\Pi_n) \), is the set of \(n \times n \) positive definite matrices.

If \(A \) and \(B \) are arbitrary matrices of the same size, the Hadamard product of \(A \) and \(B \) is the matrix \(A \ast B \) whose \((i,j)\) entry is \(a_{ij}b_{ij} \). A rather comprehensive account of this product is given in [9].

J. Schur proved the following theorem.

Theorem 1.1 [8]. If \(A, B \in \Pi_n \), then \(A \ast B \in \Pi_n \). Further, if \(A, B \in \text{int}(\Pi_n) \), then \(A \ast B \in \text{int}(\Pi_n) \).

This theorem is easily proved by noting \(A \ast B \) is a principal submatrix of the tensor product of \(A \) and \(B \).

Now suppose \(M \) is a matrix partitioned in the form

\[
M = \begin{pmatrix} A & B \\ C & D \end{pmatrix}.
\]

In [2], the generalized Schur complement of \(A \) in \(M \) is defined as

\[
M \vert A = D - CA^+B,
\]

where \(A^+ \) is the Moore-Penrose inverse of \(A \). Similarly, we define

\[
M \vert D = A - BD^+C.
\]

If \(M \) given in (1.1) is hermitian and is partitioned symmetrically, then \(C = B^* \). For this case, Albert [1] has proved the following theorem, which was generalized in [2, Theorem 2].

Theorem 1.2. Suppose \(M \) is hermitian and partitioned symmetrically in (1.1). Then \(M \in \Pi_n \) if and only if \(A \in \Pi_k, M \vert A \in \Pi_{n-k} \) and the null space of \(A \) is...
contained in the null space of B^* (i.e. $N(A) \subseteq N(B^*)$). Further, $M \in \text{int}(\Pi_n)$ if and only if $A \in \text{int}(\Pi_k)$, $M|A \in \text{int}(\Pi_{n-k})$, and $M|D \in \text{int}(\Pi_k)$.

We shall utilize Theorems 1.1 and 1.2 to obtain some new results on positive semidefinite matrices.

II. Some elements of Π_n. As in §I, $N(A)$ will denote the null space of the matrix A.

THEOREM 2. Suppose each of A, B, C, D is in Π_n, and $N(A) \subseteq N(B)$, $N(C) \subseteq N(D)$. Then

$$BA^*B \cdot DC^*D - (B \cdot D)(A \cdot C)^+ (B \cdot D) \in \Pi_n.$$

PROOF. Let

$$M = \begin{pmatrix} A & B \\ B & BA^*B \end{pmatrix}, \quad N = \begin{pmatrix} C & D \\ D & DC^*D \end{pmatrix}.$$

Both M and N are in Π_{2n} by Albert's theorem. Then applying Schur's theorem, we get

$$(2.1) \quad M \cdot N = \begin{pmatrix} A \cdot C & B \cdot D \\ B \cdot D & (BA^*B) \cdot (DC^*D) \end{pmatrix} \in \Pi_{2n}.$$

Now we reapply Theorem 1.2 to (2.1) and obtain $(BA^*B) \cdot (DC^*D) - (B \cdot D)(A \cdot C)^+ (B \cdot D) \in \Pi_n$. □

Note that as a consequence of Theorem 1.2, using the assumptions of the above theorem, we obtain that $N(A \cdot C) \subseteq N(B \cdot D)^*$.

One can obtain readily now a number of corollaries; we shall mention a few of these.

COROLLARY 2.1. If $A, C \in \text{int}(\Pi_n)$, then $A^{-1} \cdot C^{-1} - (A \cdot C)^{-1} \in \Pi_n$.

PROOF. Let $B = I_n = D$ in Theorem 2, and use the fact that $A^* = A^{-1}$ if A is invertible.

COROLLARY 2.2. Suppose $A, B \in \text{int}(\Pi_n)$; $C, D \in \Pi_n$. Then $(A \cdot B^{-1} + C) - (A^{-1} \cdot B + D)^{-1} \in \Pi_n$.

PROOF. As in the proof of Theorem 2, let

$$M = \begin{pmatrix} A & I \\ I & A^{-1} \end{pmatrix}, \quad N = \begin{pmatrix} B^{-1} & I \\ I & B \end{pmatrix}$$

and put

$$P = \begin{pmatrix} C & 0 \\ 0 & D \end{pmatrix}.$$

Then $M \cdot N + P \in \Pi_{2n}$, and the result follows by the technique used previously.

From Corollary 2.2, one obtains immediately the result that if $C, D \in \Pi_n$, then $(I + C) - (I + D)^{-1} \in \Pi_n$. Simply choose $A = B = I_n$ above.

COROLLARY 2.3. Let $A \in \text{int}(\Pi_n)$. Then
$A \ast A - (A \ast I)(A^{-1} \ast A + I)^{-1}(A \ast I)$

is in Π_n.

Proof. Let

$M = \begin{pmatrix} A & I \\ I & A^{-1} \end{pmatrix}$, $N = \begin{pmatrix} A & A \\ A & A \end{pmatrix}$, and $P = \begin{pmatrix} 0 & 0 \\ 0 & I_n \end{pmatrix}$.

Then $M \ast N + P \in \Pi_{2n}$, and the result follows as in the previous corollary.

In fact, even more is known concerning Corollary 2.3. In [9, Corollary 4.3, p. 236], Styan shows that $A \ast A - 2(A \ast I)(A^{-1} \ast A + I)^{-1}(A \ast I) \in \Pi_n$ using a technique based on probabilistic methods.

We also would like to point out that Theorem 2 is an analogue for the Schur product of Theorem 5 of [2]. There it is shown that if $A, C \in \Pi_n$, and if B, D are chosen so that $N(A) \subseteq N(B^\ast), N(C) \subseteq N(D^\ast)$, then

$B^\ast A^\ast B + D^\ast C^\ast D - (B + D)^\ast (A + C)^\ast (B + D) \in \Pi_n$.

From Corollary 2.2, if $A, B \in \text{int}(\Pi_n)$, then it follows that $A \ast B - (A^{-1} \ast B^{-1})^{-1} \in \Pi_n$. There is an analogue of this result for matrix addition, i.e. $A + B - (A^{-1} + B^{-1})^{-1} \in \text{int}(\Pi_n)$. This is a consequence of the previously mentioned result of Carlson, Haynsworth and Markham [2]; we offer a simple proof of this fact.

Let

$M = \begin{pmatrix} A & \frac{1}{2} I \\ \frac{1}{2} I & A^{-1} \end{pmatrix}$ and $N = \begin{pmatrix} B & \frac{1}{2} I \\ \frac{1}{2} I & B^{-1} \end{pmatrix}$.

By Theorem 1.2, both M and N belong to $\text{int}(\Pi_{2n})$. Now

$M + N = \begin{pmatrix} A + B & I \\ I & A^{-1} + B^{-1} \end{pmatrix} \in \text{int}(\Pi_{2n})$.

Apply Theorem 1.2 again. Then $M + N[A^{-1} + B^{-1}] \in \text{int}(\Pi_n)$. But $M + N[A^{-1} + B^{-1}] = A + B - (A^{-1} + B^{-1})^{-1}$. □

III. M-matrices. Suppose A is a square matrix over the real field. Let Z^n denote the class of $n \times n$ matrices whose off-diagonal entries are nonpositive. Assume $A \in Z^n$. A is called an M-matrix, see [6], if and only if A is invertible and A^{-1} is a nonnegative matrix (each entry is nonnegative). Let

$(3.1) G = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$.

where A and D are square matrices of order k and $n - k$, respectively.

If G is an M-matrix, then it is well known that A and D are M-matrices. Fan [5] proved that if D has order 1, then $G \mid D$ is an M-matrix. Crabtree [3, Lemma 1] extended this result to D of arbitrary order. Watford [10], in turn, proved this result for generalized M-matrices with respect to a cone.
These results are useful in obtaining an analogue of Albert's Theorem 1.2 for M-matrices.

Theorem 3. Suppose G is an $n \times n$ matrix partitioned as in (3.1), and G is in Z_n. Then G is an M-matrix if and only if A, D, $G|A$, and $G|D$ are M-matrices.

Proof. If G is an M-matrix, then A, D, $G|A$, and $G|D$ are M-matrices by the comments preceding Theorem 3.

Now suppose A, D, $G|A$, $G|D$ are M-matrices. Let

$$
\tilde{G} = \begin{bmatrix}
(G|D)^{-1} & -A^{-1}B(G|A)^{-1} \\
-D^{-1}C(G|D)^{-1} & (G|A)^{-1}
\end{bmatrix}.
$$

It is easy to verify $G \cdot \tilde{G} = I$, so G^{-1} exists. Further, G^{-1} is nonnegative since each of A^{-1}, D^{-1}, $(G|A)^{-1}$, and $(G|D)^{-1}$ is nonnegative, and B and C are nonpositive. Thus G is an M-matrix. \(\Box\)

Theorem 3 offers a practical procedure for determining if a given matrix is an M-matrix.

Now we will take a closer look at Albert's theorem. First, we need some additional notation. If α and β are strictly increasing sequences on $\{1, 2, \ldots, n\}$ of the same length, then $M(\alpha|\beta)$ will denote the minor of M with rows indexed by α and columns indexed by β. If $\alpha = \beta$, then we write $M(\alpha)$. If M is partitioned as in (1.1), where A is nonsingular of order k, then $M|A = (e_{ij})$, $i, j = k + 1, \ldots, n$, with

$$
e_{ij} = \frac{M(1, 2, \ldots, k, i\{1, 2, \ldots, k, j\})}{M(1, 2, \ldots, k)} = \frac{M(1, 2, \ldots, k, i\{1, 2, \ldots, k, j\})}{\det(A)};$$

see [4].

If M is hermitian, then M is positive definite if and only if the leading principal minors of M are positive. Hence we can rephrase Albert's theorem for this case.

Theorem 4. Suppose M is hermitian, and is partitioned symmetrically in (1.1). Then $M \in \text{int}(\Pi_q)$ if and only if $A \in \text{int}(\Pi_k)$ and $M|A \in \text{int}(\Pi_{n-k})$.

Proof. It is well known that if $M \in \text{int}(\Pi_q)$, then A and $M|A$ are positive definite.

Conversely, we need only show that the leading principal minors of M are positive. Consider an arbitrary minor, say $M(1, \ldots, i_p)$. If $i_p < k$, this minor is positive since it is a principal minor of A. Assume $i_p > k$. Then, using an identity of Sylvester [7, p. 101], we have

$$M|A(k + 1, \ldots, i_p) = (\det(A)^* \cdot M(1, \ldots, k, k + 1, \ldots, i_p)^{-1}.$$

The result now follows. \(\Box\)

If $M \in Z$, then M is an M-matrix if and only if the leading principal
minors of M are positive. Thus, Theorem 3 could also be restated in the form of Theorem 4.

Definition [6]. Suppose M is an $n \times n$ matrix. Then M belongs to class P if and only if all principal minors of M are positive.

We can generalize Albert's theorem to class P in the following manner.

Theorem 5. Let M be partitioned as in (1.1), where the submatrix A has order 1. Then

\[M \in P \text{ if and only if } A \in P, \quad M|A \in P, \quad \text{and } D \in P. \]

We omit the proof since the techniques are similar to those of Theorem 4.

Observe the following concerning Theorem 5. On the one hand, to see if $M \in P$, there are $2^n - 1$ principal minors to check. Applying the above result, we obtain a number and two matrices of order $n - 1$ to check the principal minors. Using this equivalence iteratively (to the right-hand side of (3.3)), there are $1 + 2 + \cdots + 2^{n-1}$ numbers which must be verified to be positive. But $1 + 2 + \cdots + 2^{n-1} = 2^n - 1$ for n a positive integer, so, in fact, the same number of elements must be verified. The obvious advantage of the right-hand side of (3.3) lies in the reduction of the order of the matrices at each iteration.

It is possible to reduce the number of minors checked? For example, if M has leading positive principal minors, then M does not necessarily belong to class P. A simple example to illustrate is $M = \begin{bmatrix} 1 & * & 0 \\ -1 & 2 & 0 \\ 1 & 3 & 1 \end{bmatrix}$.

Does there exist an analogue to Theorem 3 for class P when M is partitioned as in (1.1), with A of order k? If M has order 2 or 3, the result holds. For larger orders, it need not hold. Consider

\[M = \begin{bmatrix} 1 & 1 & \hline & 1 & 0 \\ \hline 1 & 2 & \hline & 0 & 1 \\ \hline \frac{1}{2} \begin{bmatrix} 2 & 3 \\ 3 & 5 \end{bmatrix} & \hline & 1 & 1 \\ \hline \end{bmatrix} = \begin{pmatrix} A & B \\ C & D \end{pmatrix}. \]

Here A, $M|A$, D, and $M|D$ are all in class P, but $M(13)$ is zero.

We conclude with the following query. Suppose M is an $n \times n$ matrix. What is the minimal number of principal minors of M that must be positive in order that M belong to class P? Is it necessary to verify that all $2^n - 1$ principal minors, or related minors, are positive?

References

DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE, UNIVERSITY OF SOUTH CAROLINA, COLUMBIA, SOUTH CAROLINA 29208