Skip to Main Content

Proceedings of the American Mathematical Society

Published by the American Mathematical Society, the Proceedings of the American Mathematical Society (PROC) is devoted to research articles of the highest quality in all areas of pure and applied mathematics.

ISSN 1088-6826 (online) ISSN 0002-9939 (print)

The 2020 MCQ for Proceedings of the American Mathematical Society is 0.85.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

A note on unconditionally converging series in $L_{p}$
HTML articles powered by AMS MathViewer

by Peter Ørno PDF
Proc. Amer. Math. Soc. 59 (1976), 252-254 Request permission

Abstract:

Theorem. A series $\sum {{f_i}}$ in ${L_p}[0, 1](1 \leqslant p \leqslant 2)$ is unconditionally convergent if and only if for each $i$ and for all $t \in [0, 1],\;{f_i}(t) = {\alpha _i}g(t){w_i}(t)$ where $({\alpha _i}) \in {l_2},\;g \in {L_2}[0, 1]$ and $({w_i})$ is an orthonormal sequence in ${L_2}[0, 2]$. This characterization allows the generalization (to u.c. series in ${L_p}[0, 1]$) of several classical theorems concerning almost everywhere convergence of orthogonal series in ${L_2}$.
References
  • G. Bennett, Unconditional convergence and almost everywhere convergence, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 34 (1976), no. 2, 135–155. MR 407580, DOI 10.1007/BF00535681
  • Adriano M. Garsia, Combinatorial inequalities and convergence of some orthonormal expansions, Orthogonal Expansions and their Continuous Analogues (Proc. Conf., Edwardsville, Ill., 1967) Southern Illinois Univ. Press, Carbondale, Ill., 1968, pp. 75–98. MR 0235378
  • A. Grothendieck, Résumé de la théorie métrique des produits tensoriels topologiques, Bol. Soc. Mat. São Paulo 8 (1953), 1–79 (French). MR 94682
  • Jean-Pierre Kahane, Some random series of functions, D. C. Heath and Company Raytheon Education Company, Lexington, Mass., 1968. MR 0254888
  • J. Lindenstrauss and A. Pełczyński, Absolutely summing operators in $L_{p}$-spaces and their applications, Studia Math. 29 (1968), 275–326. MR 231188, DOI 10.4064/sm-29-3-275-326
  • Bernard Maurey, Théorèmes de factorisation pour les opérateurs linéaires à valeurs dans les espaces $L^{p}$, Astérisque, No. 11, Société Mathématique de France, Paris, 1974 (French). With an English summary. MR 0344931
  • Bernard Maurey and Albert Nahoum, Applications radonifiantes dans l’espace des séries convergentes, C. R. Acad. Sci. Paris Sér. A-B 276 (1973), A751–A754 (French). MR 320795
  • D. Menšov, Sur les séries de fonctions orthogonales. I, II, Fund. Math. 4 (1923), 82-105; ibid. 10 (1927), 375-420.
  • B. Sekefal′vi-Nad′ and Č. Fojaš, Garmonicheskiĭ analiz operatorov v gil′bertovom prostranstve, Izdat. “Mir”, Moscow, 1970 (Russian). Translated from the French by Jr. L. Šmul′jan; Edited by Ju. P. Ginzburg; With a foreword by M. G. Kreĭn. MR 0275191
  • A. Pietsch, Absolut $p$-summierende Abbildungen in normierten Räumen, Studia Math. 28 (1966/67), 333–353 (German). MR 216328, DOI 10.4064/sm-28-3-333-353
  • Hans Rademacher, Einige Sätze über Reihen von allgemeinen Orthogonalfunktionen, Math. Ann. 87 (1922), no. 1-2, 112–138 (German). MR 1512104, DOI 10.1007/BF01458040
  • Haskell P. Rosenthal, On subspaces of $L^{p}$, Ann. of Math. (2) 97 (1973), 344–373. MR 312222, DOI 10.2307/1970850
  • B. S. Kašin, Unconditional convergence in the space $L_{1}$, Mat. Sb. (N.S.) 94(136) (1974), 540–550, 655 (Russian). MR 0385537
Similar Articles
  • Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46E30, 40H05
  • Retrieve articles in all journals with MSC: 46E30, 40H05
Additional Information
  • © Copyright 1976 American Mathematical Society
  • Journal: Proc. Amer. Math. Soc. 59 (1976), 252-254
  • MSC: Primary 46E30; Secondary 40H05
  • DOI: https://doi.org/10.1090/S0002-9939-1976-0458156-7
  • MathSciNet review: 0458156