Semilocal group rings in characteristic zero
HTML articles powered by AMS MathViewer
- by John Lawrence and Sheila M. Woods
- Proc. Amer. Math. Soc. 60 (1976), 8-10
- DOI: https://doi.org/10.1090/S0002-9939-1976-0414617-8
- PDF | Request permission
Abstract:
It is shown that if F is a field of characteristic zero and G is a group such that the group ring $F[G]$ is semilocal then G must be finite. A generalization to group rings over rings is given.References
- S. A. Amitsur, On the semi-simplicity of group algebras, Michigan Math. J. 6 (1959), 251–253. MR 108540
- Ian G. Connell, On the group ring, Canadian J. Math. 15 (1963), 650–685. MR 153705, DOI 10.4153/CJM-1963-067-0
- Edward Formanek, A problem of Herstein on group rings, Canad. Math. Bull. 17 (1974), 201–202. MR 360671, DOI 10.4153/CMB-1974-040-9
- Alex Rosenberg and Daniel Zelinsky, Tensor products of semiprimary algebras, Duke Math. J. 24 (1957), 555–559. MR 89838
Bibliographic Information
- © Copyright 1976 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 60 (1976), 8-10
- MSC: Primary 16A26
- DOI: https://doi.org/10.1090/S0002-9939-1976-0414617-8
- MathSciNet review: 0414617