On finite weak and injective dimension
HTML articles powered by AMS MathViewer
- by Leo G. Chouinard
- Proc. Amer. Math. Soc. 60 (1976), 57-60
- DOI: https://doi.org/10.1090/S0002-9939-1976-0417158-7
- PDF | Request permission
Abstract:
An extension is given of the theorem relating projective dimension to depth for a finitely generated module of finite projective dimension over a commutative Noetherian local ring. This extension is dualized to relate injective dimension to a concept of codepth when the injective dimension is known to be finite.References
- Maurice Auslander and David A. Buchsbaum, Homological dimension in local rings, Trans. Amer. Math. Soc. 85 (1957), 390–405. MR 86822, DOI 10.1090/S0002-9947-1957-0086822-7
- Maurice Auslander and David A. Buchsbaum, Homological dimension in noetherian rings. II, Trans. Amer. Math. Soc. 88 (1958), 194–206. MR 96720, DOI 10.1090/S0002-9947-1958-0096720-1
- Hyman Bass, On the ubiquity of Gorenstein rings, Math. Z. 82 (1963), 8–28. MR 153708, DOI 10.1007/BF01112819
- Henri Cartan and Samuel Eilenberg, Homological algebra, Princeton University Press, Princeton, N. J., 1956. MR 0077480
- Friedrich Ischebeck, Eine Dualität zwischen den Funktoren Ext und Tor, J. Algebra 11 (1969), 510–531 (German). MR 237613, DOI 10.1016/0021-8693(69)90090-8
- Takeshi Ishikawa, On injective modules and flat modules, J. Math. Soc. Japan 17 (1965), 291–296. MR 188272, DOI 10.2969/jmsj/01730291
Bibliographic Information
- © Copyright 1976 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 60 (1976), 57-60
- MSC: Primary 13C15
- DOI: https://doi.org/10.1090/S0002-9939-1976-0417158-7
- MathSciNet review: 0417158