Injective cogenerator rings and a theorem of Tachikawa
HTML articles powered by AMS MathViewer
- by Carl Faith
- Proc. Amer. Math. Soc. 60 (1976), 25-30
- DOI: https://doi.org/10.1090/S0002-9939-1976-0417237-4
- PDF | Request permission
Abstract:
Tachikawa showed that a left perfect ring R is an injective cogenerator in the category of all right R-modules iff there holds: (right FPF) every finitely generated faithful right module generates $\bmod {\text {-}}R$. In this paper, we simplify Tachikawa’s long and difficult proof by first obtaining some new structure theorems for a general semiperfect right FPF ring R; the most important are: R is a direct sum of uniform right ideals, and every nonzero right ideal of the basic ring ${R_0}$ of R contains a nonzero ideal of ${R_0}$. Furthermore, if the Jacobson radical rad R is nil, then R is right self-injective. Tachikawa’s theorem is an immediate consequence. We also generalize a theorem of Osofsky on perfect PF rings to FPF rings.References
- Goro Azumaya, Completely faithful modules and self-injective rings, Nagoya Math. J. 27 (1966), 697–708. MR 213389
- Hyman Bass, Finitistic dimension and a homological generalization of semi-primary rings, Trans. Amer. Math. Soc. 95 (1960), 466–488. MR 157984, DOI 10.1090/S0002-9947-1960-0157984-8
- Hyman Bass, Algebraic $K$-theory, W. A. Benjamin, Inc., New York-Amsterdam, 1968. MR 0249491
- Carl Faith and Elbert A. Walker, Direct-sum representations of injective modules, J. Algebra 5 (1967), 203–221. MR 207760, DOI 10.1016/0021-8693(67)90035-X
- Carl Faith, Algebra: rings, modules and categories. I, Die Grundlehren der mathematischen Wissenschaften, Band 190, Springer-Verlag, New York-Heidelberg, 1973. MR 0366960
- Carl Faith, Algebra. II, Grundlehren der Mathematischen Wissenschaften, No. 191, Springer-Verlag, Berlin-New York, 1976. Ring theory. MR 0427349 —, Characterizations of rings by faithful modules, Lecture Notes, Math. Dept., Technion, Haifa, Israel.
- Eben Matlis, Injective modules over Noetherian rings, Pacific J. Math. 8 (1958), 511–528. MR 99360
- Kiiti Morita, Duality for modules and its applications to the theory of rings with minimum condition, Sci. Rep. Tokyo Kyoiku Daigaku Sect. A 6 (1958), 83–142. MR 96700
- Toyonori Kato, Self-injective rings, Tohoku Math. J. (2) 19 (1967), 485–495. MR 224648, DOI 10.2748/tmj/1178243253
- Toyonori Kato, Some generalizations of $\textrm {QF}$-rings, Proc. Japan Acad. 44 (1968), 114–119. MR 231855
- Takesi Onodera, Über Kogeneratoren, Arch. Math. (Basel) 19 (1968), 402–410 (German). MR 233849, DOI 10.1007/BF01898421
- B. L. Osofsky, A generalization of quasi-Frobenius rings, J. Algebra 4 (1966), 373–387. MR 204463, DOI 10.1016/0021-8693(66)90028-7
- Hiroyuki Tachikawa, A generalization of quasi-Frobenius rings, Proc. Amer. Math. Soc. 20 (1969), 471–476. MR 237568, DOI 10.1090/S0002-9939-1969-0237568-7
- Yuzo Utumi, On quotient rings, Osaka Math. J. 8 (1956), 1–18. MR 78966
- Yuzo Utumi, Self-injective rings, J. Algebra 6 (1967), 56–64. MR 209321, DOI 10.1016/0021-8693(67)90013-0
Bibliographic Information
- © Copyright 1976 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 60 (1976), 25-30
- MSC: Primary 16A36
- DOI: https://doi.org/10.1090/S0002-9939-1976-0417237-4
- MathSciNet review: 0417237