A NOTE ON RIESZ OPERATORS

C. K. CHUI, P. W. SMITH AND J. D. WARD

Abstract. The purpose of this note is to settle a problem posed by Caradus, Pfaffenberger, and Yood; namely, it is proved that every Riesz operator R on a Hilbert space has a decomposition $R = C + Q$ where C is compact and both Q and $CQ - QC$ are quasinilpotent.

Let H denote a complex, separable, infinite dimensional Hilbert space. In [5], West showed that every Riesz operator was a decomposable Riesz operator, i.e., $R = C + Q$ where C is a compact operator and Q is quasinilpotent. In general, this decomposition is not unique.

A Riesz operator is said to be fully decomposable if R is decomposable and, in addition, C commutes with Q for some decomposition C and Q.

In [1, p. 58], an example of Gillespie and West was given showing that there are some Riesz operators on H which are not fully decomposable. They produced a Riesz operator R for which no decomposition could commute. This leads to the following question proposed in [1, p. 59]: Can every Riesz operator be decomposed in such a manner that the commutator $CQ - QC$ is quasinilpotent? The purpose of this note is to give a positive answer to this question, and, in fact, a slightly stronger result is proved.

The key to our proof is a lemma of Gohberg and Krein which was stated without proof in [3, p. 17] and was later stated and proved by Stampfli [4].

Lemma 1 [Gohberg-Krein, Stampfli]. Let E be a closed set in C. Let $\sigma(T) \setminus E$ consist of isolated points $\{\lambda_j\}$ which of necessity cluster only on E. Let each λ_j be a point of finite multiplicity. Then, $T = S + K$ where K is compact and $\sigma(S) \subseteq E$.

Our theorem will depend heavily on the "Stampfli decomposition" and on its notation. Let us recall the pertinent steps. It was shown by Stampfli [4] that for a T satisfying the hypotheses of Lemma 1,
That is, if
\[P_j = \frac{1}{2\pi i} \int_{|\lambda - \lambda_j| = \epsilon_j} (\lambda - T)^{-1} d\lambda \]
where \(0 < \epsilon_j < \min\{\min_{i \neq j}(|\lambda_i - \lambda_j|), \text{dist}(\lambda_j, E)\} \) for \(i \neq j \), then \(T \) has the matrix form listed above, where \(L = QTQ \) and \(Q \) is the orthogonal projection on \((\Sigma P_j H)^{\perp}\). Now let \(\{\alpha_k\} \) be a countable dense subset of \(E \). With each \(\lambda_j \), associate an \(\alpha_k \) as follows. Choose \(\alpha_k \) such that \(|\alpha_k - \lambda_j| < 2 \text{dist}(\lambda_j, E) \). For simplicity write \(\alpha_k \) as \(\alpha_j \). Next set
\[
K = \begin{pmatrix}
\lambda_1 - \alpha_1 & \cdots & 0 \\
0 & \lambda_2 - \alpha_2 & \cdots \\
& 0 & \ddots & \vdots \\
0 & \cdots & 0 & \lambda_n - \alpha_n
\end{pmatrix}
\]
and define \(S = T - K \). Obviously, \(K \) is compact.

We are now ready to state our theorem.

Theorem 1. Let \(T \) satisfy the hypotheses of Lemma 1. Then in the “Stampfli decomposition” \(T = S + K \), the commutator \(SK - KS \) is a compact quasi-nilpotent operator.

Proof. Clearly \(SK - KS \) is compact. Using the above notation, it is easily seen that
\[
SK - KS = \begin{pmatrix}
\hat{S}\hat{K} - \hat{K}\hat{S} & \hat{K}^* \\
0 & 0
\end{pmatrix}
\]
where \(\hat{K}^* \) denotes the product of \(\hat{K} \) and the northeast block of \(S \) and \(\hat{S} \) denotes the northwest corner of \(S \).

We first show that \(\hat{S}\hat{K} - \hat{K}\hat{S} \), viewed as an operator on \(\Sigma P_j H \) is quasi-nilpotent. As a matrix \(\hat{S}\hat{K} - \hat{K}\hat{S} \) is a compact operator, upper triangular with
main diagonal identically zero. Let \(K_n = P_n(\hat{S} \hat{K} - \hat{K} \hat{S})P_n \) where \(P_n \) projects onto \(\text{sp}\{e_1, \ldots, e_n\} \) where \(\{e_j\}_{j=1}^{\infty} \) is the orthonormal basis for which \(\hat{S} \) is upper triangular. Since \(P_n \) converges to the identity in the strong operator topology, \(K_n \) converges uniformly to \(\hat{S} \hat{K} - \hat{K} \hat{S} \). Clearly, each \(K_n \) is quasinilpotent (actually nilpotent), so by [3, Theorem 4.1], \(\hat{S} \hat{K} - \hat{K} \hat{S} \), as a uniform limit of compact quasinilpotent operators, is quasinilpotent.

To complete the proof, it suffices to show that \(SK - KS \) is quasinilpotent. By the Riesz spectral theorem for compact operators, this is equivalent to showing that \(SK - KS \) has no nonzero eigenvalues.

So assume \(\lambda \neq 0 \) and

\[
\begin{pmatrix}
\hat{S} \hat{K} - \hat{K} \hat{S} & \hat{K}^* \\
0 & 0
\end{pmatrix}
\begin{pmatrix}
e_1 \\
e_2
\end{pmatrix} = \lambda
\begin{pmatrix}
e_1 \\
e_2
\end{pmatrix}.
\]

Upon equating components of the vectors, we see that

\[e_2 = 0 \quad \text{and} \quad (\hat{S} \hat{K} - \hat{K} \hat{S})e_1 = \lambda e_1\]

which is impossible; thus \(SK - KS \) is quasinilpotent. This completes the proof.

Corollary. For a Riesz operator \(R \) on a Hilbert space, we have \(R = C + Q \) where \(C \) is compact and both \(Q \) and \(CQ - QC \) are quasinilpotent.

References

Department of Mathematics, Texas A&M University, College Station, Texas 77843