Spectral properties of linear operators for which $T^*T$ and $T$ $+$ $T^*$ commute
HTML articles powered by AMS MathViewer
- by Stephen L. Campbell and Ralph Gellar
- Proc. Amer. Math. Soc. 60 (1976), 197-202
- DOI: https://doi.org/10.1090/S0002-9939-1976-0417841-3
- PDF | Request permission
Abstract:
The class of linear operators for which ${T^\ast }T$ and $T + {T^\ast }$ commute is studied. It is shown that such operators are normaloid. If T is also completely nonnormal, then $\sigma (T) = \sigma ({T^\ast })$. Also, isolated points of $\sigma (T)$ are reducing eigenvalues. Finally, if $\sigma (T)$ is a subset of either a vertical line or the real axis, then T is normal.References
- S. K. Berberian, Some conditions on an operator implying normality, Math. Ann. 184 (1969/70), 188–192. MR 256205, DOI 10.1007/BF01351562
- S. K. Berberian, Some conditions on an operator implying normality. II, Proc. Amer. Math. Soc. 26 (1970), 277–281. MR 265975, DOI 10.1090/S0002-9939-1970-0265975-3
- Arlen Brown, On a class of operators, Proc. Amer. Math. Soc. 4 (1953), 723–728. MR 59483, DOI 10.1090/S0002-9939-1953-0059483-2
- Stephen L. Campbell, Linear operators for which $T^*T$ and $T+T^*$ commute, Pacific J. Math. 61 (1975), no. 1, 53–57. MR 405168
- Stephen L. Campbell, Operator-valued inner functions analytic on the closed disc. II, Pacific J. Math. 60 (1976), no. 2, 37–49. MR 428078
- Mary R. Embry, A connection between commutativity and separation of spectra of operators, Acta Sci. Math. (Szeged) 32 (1971), 235–237. MR 303321
- Paul R. Halmos, A Hilbert space problem book, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1967. MR 0208368
- Bernard B. Morrel, A decomposition for some operators, Indiana Univ. Math. J. 23 (1973/74), 497–511. MR 343079, DOI 10.1512/iumj.1973.23.23042
Bibliographic Information
- © Copyright 1976 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 60 (1976), 197-202
- MSC: Primary 47B20
- DOI: https://doi.org/10.1090/S0002-9939-1976-0417841-3
- MathSciNet review: 0417841