On homoclinic points
HTML articles powered by AMS MathViewer
- by S. Newhouse
- Proc. Amer. Math. Soc. 60 (1976), 221-224
- DOI: https://doi.org/10.1090/S0002-9939-1976-0418169-8
- PDF | Request permission
Abstract:
Results of R. C. Robinson and D. Pixton on the existence of homoclinic points for diffeomorphisms on the two-sphere are extended. An application to area preserving diffeomorphisms on surfaces is given.References
- V. I. Arnol′d and A. Avez, Ergodic problems of classical mechanics, W. A. Benjamin, Inc., New York-Amsterdam, 1968. Translated from the French by A. Avez. MR 0232910
- Sheldon E. Newhouse, Hyperbolic limit sets, Trans. Amer. Math. Soc. 167 (1972), 125–150. MR 295388, DOI 10.1090/S0002-9947-1972-0295388-6
- Sheldon E. Newhouse, Quasi-elliptic periodic points in conservative dynamical systems, Amer. J. Math. 99 (1977), no. 5, 1061–1087. MR 455049, DOI 10.2307/2374000
- J. Palis, On Morse-Smale dynamical systems, Topology 8 (1968), 385–404. MR 246316, DOI 10.1016/0040-9383(69)90024-X D. Pixton, A closing lemma for invariant manifolds, Thesis, Univ. of California, Berkeley, Calif., 1974.
- R. Clark Robinson, Generic properties of conservative systems, Amer. J. Math. 92 (1970), 562–603. MR 273640, DOI 10.2307/2373361
- Clark Robinson, Closing stable and unstable manifolds on the two sphere, Proc. Amer. Math. Soc. 41 (1973), 299–303. MR 321141, DOI 10.1090/S0002-9939-1973-0321141-7
- Stephen Smale, Diffeomorphisms with many periodic points, Differential and Combinatorial Topology (A Symposium in Honor of Marston Morse), Princeton Univ. Press, Princeton, N.J., 1965, pp. 63–80. MR 0182020
- Floris Takens, Homoclinic points in conservative systems, Invent. Math. 18 (1972), 267–292. MR 331435, DOI 10.1007/BF01389816
Bibliographic Information
- © Copyright 1976 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 60 (1976), 221-224
- MSC: Primary 58F20
- DOI: https://doi.org/10.1090/S0002-9939-1976-0418169-8
- MathSciNet review: 0418169