Eigenvalues of Hopf manifolds
Authors:
Eric Bedford and Tatsuo Suwa
Journal:
Proc. Amer. Math. Soc. 60 (1976), 259-264
MSC:
Primary 58G99; Secondary 32C10
DOI:
https://doi.org/10.1090/S0002-9939-1976-0418172-8
MathSciNet review:
0418172
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: The eigenvalues of the Laplacians $\Delta$ and $\square$ on the Hopf manifolds are described. Some isospectral results are also given.
- Marcel Berger, Paul Gauduchon, and Edmond Mazet, Le spectre d’une variété riemannienne, Lecture Notes in Mathematics, Vol. 194, Springer-Verlag, Berlin-New York, 1971 (French). MR 0282313
- K. Kodaira and D. C. Spencer, On deformations of complex analytic structures. I, II, Ann. of Math. (2) 67 (1958), 328–466. MR 112154, DOI https://doi.org/10.2307/1970009
- James Morrow and Kunihiko Kodaira, Complex manifolds, Holt, Rinehart and Winston, Inc., New York-Montreal, Que.-London, 1971. MR 0302937
- Peter B. Gilkey, The spectral geometry of real and complex manifolds, Differential geometry (Proc. Sympos. Pure Math., Vol. XXVII, Part 2, Stanford Univ., Stanford, Calif., 1973) Amer. Math. Soc., Providence, R.I., 1975, pp. 265–280. MR 0388466
Retrieve articles in Proceedings of the American Mathematical Society with MSC: 58G99, 32C10
Retrieve articles in all journals with MSC: 58G99, 32C10
Additional Information
Keywords:
Hopf manifold,
hermitian metric,
Laplacian,
eigenvalues,
isospectral problem
Article copyright:
© Copyright 1976
American Mathematical Society