A CHARACTERIZATION OF \(\mu \)-SEMIRINGS

MARGARITA RAMALHO

Abstract. A characterization of \(\mu \)-semirings is given, namely, "A semiring \(\mathcal{S} \) is a \(\mu \)-semiring, if and only if, for each ideal \(a \) of \(\mathcal{S} \) with no subideals in a \(\pi \)-system \(\mathcal{B} \), there exists a maximal ideal which has no subideals in \(\mathcal{B} \) and contains \(a \)."

1. Introduction. A semiring is an algebraic system \(\mathcal{S} = \{a, b, c, \ldots \} \) in which two binary associative operations, called sum (\(+ \)) and product (\(\cdot \)), are defined so that the operation \(\cdot \) is both left- and right-distributive over \(+ \). A subset \(a \) of \(\mathcal{S} \) is called an ideal if: (i) \(a, b \in a \) imply \(a + b \in a \); (ii) \(a \in a, s \in \mathcal{S} \) imply \(as \in a, sa \in a \).

A subset \(M \) of \(\mathcal{S} \) is called an \(m \)-system of \(\mathcal{S} \) if, for each pair \(a, b \in M \), there exists \(x \in \mathcal{S} \) such that \(axb \in M \); a subset \(P \) of \(\mathcal{S} \) is called a \(p \)-system of \(\mathcal{S} \) if, for each \(a \in P \), there exists \(x \in P \) such that \(axa \in P \). These concepts, stemming from ring theory, allow us, as in that theory, to make the study of prime and semiprime ideals and to introduce the notion of the Baer-McCoy-Levitzki radical [1].

Lattice semirings are instances of interesting semirings. \(\mathcal{S} \) is a lattice semiring if: (i) \(\mathcal{S} \) is a lattice besides being a semiring; (ii) the operations \(\wedge, \vee \) satisfy \(x + y = x \vee y, xy \leq x \wedge y \). For these semirings, M. L. Noronha Galvão gave [5] a theory for primary and primal ideals analogous to the theory of Noether-Krull-Fuchs.

Important examples of lattice semirings are the sets \(\mathcal{S} \) of all ideals either of a ring or of a semiring or of a semigroup. \(m \)-systems and \(p \)-systems of \(\mathcal{S} \) are called by A. Almeida Costa [2], respectively, \(\mu \)-systems and \(\pi \)-systems of \(\mathcal{S} \). Consequently, leaving aside \(\mathcal{S} \), a set \(\mathcal{M} \) of ideals of a semiring \(\mathcal{S} \) is a \(\mu \)-system, if and only if, for each pair \(a, b \in \mathcal{M} \), there exists an ideal \(\mathcal{I} \) of \(\mathcal{S} \) such that \(axb \in \mathcal{I} \); a set \(\mathcal{P} \) of ideals of \(\mathcal{S} \) is a \(\pi \)-system if and only if, for each \(a \in \mathcal{P} \), there exists an ideal \(\mathcal{I} \) of \(\mathcal{S} \) such that \(axa \in \mathcal{I} \). Moreover, in any semiring \(\mathcal{S} \) the set of all ideals which are not contained in a given prime ideal is a \(\mu \)-system and the set of all ideals which are not contained in a given semiprime ideal is a \(\pi \)-system.

A \(\mu \)-semiring is a semiring which satisfies either the \(\mu \)-condition or the...
π-condition. These conditions are defined as follows (we denote by $C(\pi)$ the set of all ideals which are not subideals of π):

(μ) For every μ-system \mathcal{M} and every chain of ideals $\{a_\lambda\}$ ($\lambda \in \Lambda$) such that $\mathcal{M} \subseteq C(a_\lambda)$ ($\lambda \in \Lambda$) one has $\mathcal{M} \subseteq C(\bigcup a_\lambda)$;

(π) For every π-system \mathcal{P} and every chain of ideals $\{a_\lambda\}$ ($\lambda \in \Lambda$) such that $\mathcal{P} \subseteq C(a_\lambda)$ ($\lambda \in \Lambda$) one has $\mathcal{P} \subseteq C(\bigcup a_\lambda)$.

These assertions are equivalent, as proved in [4] and [5] where the theory of μ-semirings is developed. These assertions are also equivalent to the following:

(μ_1) For every μ-system \mathcal{M} and every chain of ideals $\{a_\lambda\}$ ($\lambda \in \Lambda$) such that $\mathcal{M} \subseteq C(a_\lambda)$ ($\lambda \in \Lambda$) there is an ideal a such that $a_\lambda \subseteq a$ ($\lambda \in \Lambda$), $\mathcal{M} \subseteq C(a)$;

(π_1) For every π-system \mathcal{P} and every chain of ideals $\{a_\lambda\}$ ($\lambda \in \Lambda$) such that $\mathcal{P} \subseteq C(a_\lambda)$ ($\lambda \in \Lambda$) there is an ideal a such that $a_\lambda \subseteq a$ ($\lambda \in \Lambda$), $\mathcal{P} \subseteq C(a)$.

Noetherian semirings, that is, those which satisfy the a.c.c. for ideals (in particular, semirings of finite order) and non-Noetherian semirings consisting of the real numbers $x > r$, where $r > 1$ is a real number [3], provide examples of μ-semirings.

In the general theory of semirings the use of certain μ-systems and certain π-systems (said "particulars") has permitted the establishment of results concerning prime and semiprime ideals and consequent radical theories, but in the theory of μ-semirings the use of μ-systems and π-systems is sufficient to establish the Noether-Krull-Fuchs results.

Let us take in a μ-semiring a μ-system \mathcal{M} (π-system \mathcal{P}) and an ideal a with no subideals in \mathcal{M} (in \mathcal{P}). From Zorn's lemma it follows that there is a maximal ideal which has no subideals in \mathcal{M} (in \mathcal{P}) and contains a.

In this note we will prove the following characterization of μ-semirings:

A semiring \mathcal{S} is a μ-semiring if and only if it satisfies the condition:

(π_0) For each ideal a and for each π-system \mathcal{P} such that a has no subideals in \mathcal{P}, i.e., $\mathcal{P} \subseteq C(a)$, there exists a maximal ideal η which has no subideals in \mathcal{P} and contains a, i.e., $\mathcal{P} \subseteq C(\eta) \subseteq C(a)$.

2. Preliminary propositions. We first prove:

Proposition 1. Let \mathcal{P} be a π-system. If there is a maximal ideal η with no subideals in \mathcal{P}, i.e., $\mathcal{P} \subseteq C(\eta)$, then η is a semiprime ideal.

Proof. Let us assume that η is not semiprime. Then for an ideal π one has $\pi^2 \subseteq \eta$, $\pi \not\subseteq \eta$. Hence $\eta \subset (\pi, \eta)$, the least ideal containing both π and η. Since η is maximal and has no subideals in \mathcal{P}, there exists $m \in \mathcal{P}$ such that $m \subseteq (\pi, \eta)$. Let us consider an ideal ξ such that $m^2 \subseteq (\xi, \mathcal{M}) \subseteq \eta$ contradict the hypothesis about η. Hence $\pi^2 \subseteq \eta$ implies $\pi \subseteq \eta$.

Let \mathcal{P} be a π-system and a an ideal such that $\mathcal{P} \subseteq C(a)$; then a maximal ideal η such that $\mathcal{P} \subseteq C(\eta) \subseteq C(a)$ is, of course, a maximal ideal satisfying $\mathcal{P} \subseteq C(\eta)$. We have:
Corollary 1. Let \mathcal{B} be a π-system and α an ideal such that $C(\alpha)$. If there is a maximal ideal η such that $\mathcal{B} \subseteq C(\eta) \subseteq C(\alpha)$, then η is a semiprime ideal.

Lemma 1. Let α be a semiring satisfying condition (π_0). Given a π-system \mathcal{B} and an ideal α such that $\mathcal{B} \subseteq C(\alpha)$, then there exists a minimal semiprime ideal $\bar{\mathcal{B}}$ such that $\mathcal{B} \subseteq C(\bar{\mathcal{B}}) \subseteq C(\alpha)$.

Proof. Condition (π_0) implies the existence of a maximal ideal η such that $\mathcal{B} \subseteq C(\eta) \subseteq C(\alpha)$. Since, by Corollary 1, η is semiprime, the intersection of all semiprime ideals η such that $\mathcal{B} \subseteq C(\eta) \subseteq C(\alpha)$ is the minimal semiprime ideal $\bar{\mathcal{B}}$ we are looking for.

Now, let \mathfrak{g} be a family of ideals of a semiring \mathfrak{S} satisfying the following conditions: (G_1) $g_1, g_2 \in \mathfrak{g}$ imply $(g_1, g_2) \in \mathfrak{g}$; (G_2) $g \subseteq g_1 \in \mathfrak{g}$ imply $g \in \mathfrak{g}$ (\mathfrak{g} is an ideal of the lattice \mathfrak{S} of all ideals of \mathfrak{S}). It is easy to verify that the existence of a maximal element $g_0 \in \mathfrak{g}$ implies $g_0 = \bigcup g (g \in \mathfrak{g})$. It is the same to say that g_0 is maximal in \mathfrak{g} or to say that g_0 is maximal such that $\mathfrak{g} - g = C(\eta_0)$.

Lemma 2. Let \mathfrak{S} be a semiring satisfying condition (π_0) and let $\{S_\lambda\} (\lambda \in \Lambda)$ be a chain of semiprime ideals; then $\bigcup S_\lambda = S_{\lambda_0}$ for some $\lambda_0 \in \Lambda$.

Proof. Let \mathfrak{g} be the family consisting of all subideals of all S_λ. \mathfrak{g} satisfies (G_1) and (G_2). We shall verify that the set of all ideals not in \mathfrak{g}, $\mathcal{B} = \mathfrak{S} - \mathfrak{g}$, is a π-system. Given $\mathfrak{x} \in \mathcal{B}$ we shall prove that $\mathfrak{g} \mathfrak{x} \mathfrak{g} \in \mathcal{B}$. If this were not so, one would have $\mathfrak{g} \mathfrak{x} \mathfrak{g} \subseteq \mathfrak{g}$, hence $\mathfrak{g} \mathfrak{x} \mathfrak{g} \subseteq S_\lambda$, for some $\lambda \in \Lambda$, which would imply $\mathfrak{x} \subseteq S_\lambda$, i.e., $\mathfrak{x} \in \mathfrak{g}$, which is absurd. The fact that \mathfrak{S} satisfies condition (π_0) and the inclusion $\mathcal{B} \subseteq C(S_\lambda)$, together, imply the existence of a maximal ideal η such that $\mathcal{B} \subseteq C(\eta)$. Thus we conclude the existence of a maximal ideal in \mathfrak{g}, which is necessarily a S_λ such that $\bigcup S_\lambda = S_{\lambda_0} (\lambda \in \Lambda)$.

3. **Main proposition.** We have seen above, in the introduction, that the necessity of condition (π_0) for \mathfrak{S} to be a μ-semiring is a consequence of Zorn’s lemma. Conversely, let \mathfrak{S} be a semiring that satisfies condition (π_0), let \mathcal{B} be a π-system, and let $\{a_\lambda\} (\lambda \in \Lambda)$ be a chain of ideals of \mathfrak{S} such that $\mathcal{B} \subseteq C(a_\lambda)$ (H = Λ). By Lemma 1, we can assign to each a_λ the minimal semiprime ideal S_λ such that $\mathcal{B} \subseteq C(S_\lambda) \subseteq C(a_\lambda)$. From $a_\alpha \subseteq a_\lambda$, one concludes $\mathcal{B} \subseteq C(S_\lambda) \subseteq C(a_\lambda) \subseteq C(a_\alpha)$, hence by the minimality of S_α, $S_\alpha \subseteq S_\lambda$. Then, by Lemma 2 and by the fact that $a_\lambda \subseteq S_\lambda$, $a_\alpha \subseteq S_\alpha$, we have $S_\lambda = S_{\lambda_0}$; consequently, $\mathcal{B} \subseteq C(S_{\lambda_0}) \subseteq C(\bigcup a_\lambda)$. This completes the proof of the main proposition.

The author wishes to thank the referee for his suggestions.

Bibliography

Instituto de Alta Cultura, Lisbon, Portugal

Current address: Rua Pais Ramos, n°. 26, 3°. E., Amadora, Portugal