A strengthening of centerlessness in Teichmüller theory
HTML articles powered by AMS MathViewer
- by Michael Engber
- Proc. Amer. Math. Soc. 60 (1976), 144-148
- DOI: https://doi.org/10.1090/S0002-9939-1976-0419843-X
- PDF | Request permission
Abstract:
A group-theoretic property of braid groups is used to eliminate certain hypotheses in the construction of Teichmüller space for Riemann surfaces of finite type. The result is a clarification of the geometric content of the Bers fiber space theorem.References
- Clifford J. Earle and James Eells, A fibre bundle description of Teichmüller theory, J. Differential Geometry 3 (1969), 19–43. MR 276999
- Michael Engber, Teichmüller spaces and representability of functors, Trans. Amer. Math. Soc. 201 (1975), 213–226. MR 414939, DOI 10.1090/S0002-9947-1975-0414939-4
- Edward Fadell and Lee Neuwirth, Configuration spaces, Math. Scand. 10 (1962), 111–118. MR 141126, DOI 10.7146/math.scand.a-10517
- Karen N. Frederick, The Hopfian property for a class of fundamental groups, Comm. Pure Appl. Math. 16 (1963), 1–8. MR 149460, DOI 10.1002/cpa.3160160102
- André Gramain, Le type d’homotopie du groupe des difféomorphismes d’une surface compacte, Ann. Sci. École Norm. Sup. (4) 6 (1973), 53–66 (French). MR 326773 A. Grothendieck, Techniques de construction en géométrie analytique, Séminaire H. Cartan, 1960/61, exposés 7, 9-17, Secrétariat mathématique, Paris, 1962.
- Wilhelm Magnus, Abraham Karrass, and Donald Solitar, Combinatorial group theory: Presentations of groups in terms of generators and relations, Interscience Publishers [John Wiley & Sons], New York-London-Sydney, 1966. MR 0207802
Bibliographic Information
- © Copyright 1976 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 60 (1976), 144-148
- MSC: Primary 32G15; Secondary 14H15
- DOI: https://doi.org/10.1090/S0002-9939-1976-0419843-X
- MathSciNet review: 0419843