VANISHING SOLUTIONS OF THE DISSIPATIVE ACOUSTIC EQUATION IN AN EXTERIOR DOMAIN

DANIEL A. BONDY

ABSTRACT. Except in one dimension, strictly incoming waves cannot be propagated by the wave equation with dissipative boundary conditions so that they disappear asymptotically in forward time.

In [4] Lax and Phillips consider the acoustic equation in an exterior domain $G \subset \mathbb{R}^n$:

\[
\begin{aligned}
 u_{tt} &= \Delta u & \text{in } G, \\
 \partial_n u + \sigma u_t &= 0, & \sigma > 0 \text{ in } \partial G.
\end{aligned}
\]

They assume G contains the complement of the ball of radius ρ. As in [4], we define H to be the Hilbert space of all initial data d with finite energy in G. Let $T(t)$ be the (strongly continuous) contraction semigroup formed by mapping initial data into data at time t.

If $G = \mathbb{R}^n$ (and the second part of (1.1) is vacuous) we will denote H by H_0 and $T(t)$ by $U_0(t)$. We note that $U_0(t)$ is a unitary group. We denote the cogenerator (see Chapter 3 of [5]) of $T(t)$ by T and the cogenerator of $U_0(t)$ by U_0. Let $D_+ \subset H$ be the set of all initial data vanishing on $\{x| |x| < \rho \pm t, t > 0\}$.

We will prove the following

Theorem. Let n be greater than 1. (Recall that $G \subset \mathbb{R}^n$.) If $d \in D_-$ and $d \not\equiv 0$. Then $\lim_{t \to +\infty} T(t)d \neq 0$.

Before starting the proof we recall some of the material in [2], [3], and [4]. We represent the action of $U_0(t)$ on H_0 as right translation on $L^2(\mathbb{R}, N)$ (i.e., the set of all square integrable N-valued functions on \mathbb{R}) for some auxiliary Hilbert space N so that D_- is mapped onto $L^2(\mathbb{R}_- - \rho, N)$. In this representation D_+ is mapped onto

\[L^2(\mathbb{R}_+ + \rho, N) \text{ if } n \text{ is odd} \]

and

\[\mathcal{K}L^2(\mathbb{R}_+ + \rho, N) \text{ if } n \text{ is even} \]

where

Received by the editors December 5, 1975 and, in revised form, February 2, 1976.

Key words and phrases. Dissipative scattering theory.

Copyright © 1977, American Mathematical Society
(1.2) \[\mathcal{K}(s) = \mathcal{T}^{-1} \mathcal{K}(\sigma) \mathcal{T}, \]
(1.3) \[\mathcal{K}(\sigma) = \text{sgn} \sigma \]
and \(\mathcal{T} \) is the Fourier transform.

Since \(T(t)|_{D_+} = U_0(t)|_{D_+} \) for \(t > 0 \), and \(T(t)|_{D_-} = U_0(-t)|_{D_-} \) for \(t > 0 \), we can embed \(H \) onto \(L^2(\mathbb{R}, N) \) so that \(T(t)^* \) acts on \(L^2(\mathbb{R}_- - \rho, N) \) as left translation by \(t \) and \(T(t) \) acts on \(L^2(\mathbb{R}_+ + \rho, N) \) (resp. \(\mathcal{K}L^2(\mathbb{R}_+ + \rho, N) \)) if \(n = \text{odd} \) (resp. if \(n = \text{even} \)) as right translation by \(t \). The action of \(T(t) \) on the rest of \(L^2(\mathbb{R}, N) \) is more difficult to describe.

Lemma 1.1. Let \(f(s) \in D_- \). Then \(f(s) \in T^*D_- \) if and only if \(\hat{f}(\sigma) \), the Fourier transform of \(f(s) \), is zero at the point \((0, -i)\).

Proof. Let \(f(s) \in D_- \). Then by Chapter III of [5] and the fact that \(T(t)^*f(s) = f(s + t) \) for \(t \in \mathbb{R}_+ \) we conclude

\[
(T^*f)(s) = f(s) \operatorname{s-lim}_{t \to 0^+} \frac{t}{1 + t} \sum_{n=0}^{\infty} \frac{f(s + nt)}{(1 + it)^n}.
\]

Taking the Fourier transform

\[
\mathcal{F}(T^*f)(\sigma) = \mathcal{F}(\hat{f})(\sigma) + \operatorname{s-lim}_{t \to 0^+} \frac{t}{1 + t} \sum_{n=0}^{\infty} \frac{e^{int}\hat{f}(\sigma)}{(1 + it)^n} = \mathcal{F}(\hat{f})(\sigma)(1 - 1/\sigma).
\]

Since \(\mathcal{F}(T^*f)(\sigma) \) and \(\mathcal{F}(\hat{f})(\sigma) \) are analytic in the lower half plane, the above calculation shows \((Tf)(-i) = 0 \).

Conversely if \(g(s) \in D_- \) and \(\hat{g}(\sigma) \) has a zero at \(-i\), then

\[
\hat{g}(\sigma) = (\sigma + i)(\sigma - i)^{-1} \hat{f}(\sigma) \quad \text{for some } f \in D_-.
\]

But \(T^* = U_0^{-1} \) on \(D_- \), and \(U_0^{-1} \) acts as multiplication by \((\sigma + i)/(\sigma - i)^{-1}\) in the Fourier transform of the translation representation (called the spectral representation in [2]). To see this, note that \(A_0 \), the generator of \(U_0(t) \), acts as multiplication by \(it \) in the spectral representation. The action of

\[
U_0 = (I + A_0)(I - A_0)^{-1}
\]

is now clear. Thus \(g(s) = (T^*f)(s) \) for \(f \in D_- \). This proves the lemma.

Define the wave operators as

\[
(1.4) \quad W_1 = \operatorname{s-lim}_{t \to \infty} T(t)J_0U_0(-t), \quad W_2 = \operatorname{s-lim}_{t \to \infty} U_0(-t)JT(t),
\]

where \(J, J_0 \) are continuous linear maps from \(H \) to \(H_0 \) and \(H_0 \) to \(H \) respectively which act as the identity on \(D_- \vee D_+ \). Define the scattering operator \(S \) as in [4] by

\[
(1.5) \quad S = W_2W_1.
\]

Lemma 1.2. For any \(d \in D_- \)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
THE DISSIPATIVE ACOUSTIC EQUATION

(1.6) \[P_{D^*} Td = P_{D^*} U_0 Sd. \]

PROOF. From the definitions of \(W_1 \) and \(W_2 \) we have \(W_2 T = U_0 W_1 \). Since \(W_2 |_{D^*} = I|_{D^*} = W_2^* |_{D^*} \), we see that for any \(d \in H \),
\[P_{D^*} U_0 W_2 d = P_{D^*} W_2 T d = W_2 P_{D^*} T d = P_{D^*} T d. \]
If \(d \in D_- \) we see that \(W_1 d = d \) so that by (1.5)
\[P_{D^*} T d = P_{D^*} U_0 [W_2 W_1] d = P_{D^*} U_0 Sd \]
for any \(d \in D_- \). Q.E.D.

Since \(U_0(t) \) acts as right translation by \(t \) on \(L^2(\mathbb{R}, \mathbb{N}) \) we can calculate \(U_0 \) as

(1.7) \[(U_0 f)(s) = f(s) - 2e^{-\xi} \int_{-\infty}^s f(\xi) e^{i\xi} d\xi, \quad f \in L^2(\mathbb{R}, \mathbb{N}). \]

The operator \(S \) on \(H_0 = L^2(\mathbb{R}, \mathbb{N}) \) commutes with \(U_0(t) \) (= translation by \(t \)) and it follows that in the spectral representation (= Fourier transform space) the corresponding operator, denoted by \(\hat{S} \), acts on \(L^2(\mathbb{R}, \mathbb{N}) \) by multiplication

\[\hat{S} f(\sigma) = \hat{S}(\sigma) f(\sigma), \quad f \in L^2(\mathbb{R}, \mathbb{N}). \]

We now prove the theorem for the case when \(n \) is odd \((\neq 1)\). In [4] it is shown that \(\hat{S}(\sigma) \) has an analytic extension to the lower half plane if \(n \) is odd. In particular it is shown that

(1.8) \[S(L^2(\mathbb{R} - \rho, \mathbb{N})) \subset L^2(\mathbb{R} + \rho, \mathbb{N}). \]

PROPOSITION 1.3. Let \(d \) be a nonzero element of \(D_- \). We also assume \(U_0 d \notin D_- \) and \(\hat{S}(-i) \) is invertible.
Then \(U_0 Sd \) is not orthogonal to \(D_+ \).

PROOF. Let \(d \in D_- \). Then in the translation representation \(d \) has its support in \((-\infty, -\rho]\). Since \(S \) satisfies (1.8) we see \((Sf) \) has its support in \((-\infty, \rho]\). From (1.7) it is clear that if \(U_0 Dd \) has its support in \((-\infty, \rho]\) then

(1.10) \[0 = \int_{-\rho}^0 (Sd)(\xi) e^{i\xi} d\xi = \int_{-\infty}^{\infty} (Sd)(\xi) e^{i\xi} d\xi. \]

Rewriting (1.10) we see \(\hat{S} \hat{d} = 0 \), i.e. \(\hat{S}(-i) \hat{d} = 0 \). By assumption, \(\hat{S}(-i) \) is invertible and we conclude \(\hat{d}(-i) = 0 \). Thus by Lemma 1.1 we see \(d \in T^* D_- = U_0^{-1} D_- \), i.e. \(U_0 d \in D_- \). But we assumed \(U_0 d \notin D_- \). Thus \(U_0 Sd \) does not have its support in \((-\infty, \rho]\).

Since \(D_+ = L^2(\rho, \infty, \mathbb{N}) \) in the translation representation, we conclude that \(U_0 Sd \) is not orthogonal to \(D_+ \).

PROPOSITION 1.4. Let \(d \in D_- \) be nonzero and assume (1.9) holds. Then \(\text{s-lim}_{t \to \infty} T(t)d \neq 0 \).

PROOF. By Proposition III 9.1 of [5], it suffices to show
Now if $d \not\equiv 0$ we can find a smallest $m > 0$ so that $T^m d \not\in T^* D_-$ and $T^m d \in D_-$. We conclude by Proposition 1.3 that $U_0 S T^m d$ is not orthogonal to D_+. Thus by (1.6) we see $P_{D_+} T^{m+1} d \neq 0$. Now let U on $K \supset H$ be the minimal unitary dilation of T (see [5]). On D_+ we see $T|_{D_+} = U|_{D_+} = U|_{D_+}$. Thus for $n > 0$

$$0 = (D_+, H \otimes D_+) = (U^n D_+, (H \otimes D_+))
= (T^n D_+, U^n (H \otimes D_+)) = (T^n D_+, T^n (H \otimes D_+)).$$

Thus if $T^{m+1} d = \beta \oplus \beta_+$, $\beta \in H \otimes D_+$, $\beta_+ \in D_+$ we see

$$T^\ast \beta_+ \perp T^\ast \beta \quad \text{all } n > 0.$$

Thus

$$\|T^\ast T^{m+1} d\|^2 = \|T^\ast \beta_+ + T^\ast \beta\|^2 = \|T^\ast \beta_+\|^2 + \|T^\ast \beta\|^2 > \|T^\ast \beta_+\|^2 = 0.$$

Thus we can conclude (1.11). Q.E.D.

We now relax the restriction imposed by (1.9) and complete the proof of the theorem in the odd-dimensional case.

Proposition 1.5. If $d \in D_-$, then

$$\lim_{t \to \infty} T(t) d \neq 0.$$

Proof. Recall that G contains the complement of the ball of radius ρ. Define $V(x, t) = u(cx, ct)$, $c > 0$. Then $u(x, t)$ satisfies

$$\begin{cases}
\frac{\partial v}{\partial t} = \Delta v & \text{in } G', \\
\frac{\partial v}{\partial t} + \sigma v = 0 & \text{in } \partial G', \sigma > 0,
\end{cases}$$

where $G' = \{c^{-1} [g] | g \in G \}.$

Define $D_-(v)$ as the subspace of initial data which vanishes on $\{|x| \leq \rho/c + t, t < 0\}$ under the action of (1.13). Recall the definition of $D_-(u)$ as the subspace of initial data which vanishes on $\{|x| < \rho + t, t < 0\}$ under the action of (1.1). It is clear that c can be chosen so that G' contains the complement of a ball of radius less than one. By Theorem 10.10 of [4], since n is greater than one, we can conclude that the scattering matrix for the v-system is invertible at $-i$. Thus by Propositions 1.3 and 1.4, (1.12) holds for the v-system. But the statement of the theorem is invariant under the change from the v to the u systems. Thus (1.12) holds for both the u and v systems and the theorem is proven for the case when n is odd and greater than one.

We now look at the case when n is even. To prove the theorem in this case it suffices to establish that $U_0 S d$ is not orthogonal to D_+ for any nonzero d in D_-. Once this is done the argument in Proposition 1.4 (with $m = 0$) can be used as before to conclude (1.11).
Proposition 1.6. Let \(d \) be a nonzero element of \(D_- \) and let \(n \) be even. Then \(U_0Sd \) is not orthogonal to \(D_+ \).

Proof. Let \(d \in D_- \). Then
\[
(Sd, D_+) = (W_2W_1d, D_+) = (W_1d, W_2^*D_+) = (d, D_+).
\]
If \(Sd \) is orthogonal to \(D_+ \), then \(d \in D_- \cap D_+ \perp \). Thus \(\hat{d}(\sigma) \) and \(\hat{\kappa}(\sigma) \cdot \hat{d}(\sigma) \) both have analytic extensions to the lower half plane. But this is clearly impossible unless \(\hat{d}(\sigma) \equiv 0 \), i.e. \(d(s) \equiv 0 \). Thus \(Sd \) is not orthogonal to \(D_+ \). Since \(U_0^{-1}D_+ \supset D_+ \) we conclude \(U_0Sd \) is not orthogonal to \(D_+ \).

The proof of the theorem is now complete.

In conclusion, I would like to thank the referee for pointing out that the theorem does not hold for \(n = 1 \), by providing the following counterexample:

\[
G = \{ x > a \}, \quad u = f(x + t), \quad f \text{ of compact support},
\]
\[
- u_x + u_t = 0 \quad \text{on} \quad x = a.
\]

References

