Vanishing solutions of the dissipative acoustic equation in an exterior domain
HTML articles powered by AMS MathViewer
- by Daniel A. Bondy
- Proc. Amer. Math. Soc. 60 (1976), 129-133
- DOI: https://doi.org/10.1090/S0002-9939-1976-0420028-1
- PDF | Request permission
Abstract:
Except in one dimension, strictly incoming waves cannot be propagated by the wave equation with dissipative boundary conditions so that they disappear asymptotically in forward time.References
- Chong Chan, The scattering matrix for the acoustic equation in an exterior domain with dissipative boundary conditions, Ph.D. Dissertation, Stanford Univ., Stanford, Calif., 1974.
- Peter D. Lax and Ralph S. Phillips, Scattering theory, Pure and Applied Mathematics, Vol. 26, Academic Press, New York-London, 1967. MR 0217440
- P. D. Lax and R. S. Phillips, Scattering theory for the acoustic equation in an even number of space dimensions, Indiana Univ. Math. J. 22 (1972/73), 101–134. MR 304882, DOI 10.1512/iumj.1972.22.22011
- P. D. Lax and R. S. Phillips, Scattering theory for dissipative hyperbolic systems, J. Functional Analysis 14 (1973), 172–235. MR 0353016, DOI 10.1016/0022-1236(73)90049-9
- Béla Sz.-Nagy and Ciprian Foiaş, Harmonic analysis of operators on Hilbert space, North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New York; Akadémiai Kiadó, Budapest, 1970. Translated from the French and revised. MR 0275190
Bibliographic Information
- © Copyright 1976 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 60 (1976), 129-133
- MSC: Primary 35P25
- DOI: https://doi.org/10.1090/S0002-9939-1976-0420028-1
- MathSciNet review: 0420028