Continuous mappings from Cantor spaces onto inverse limit spectra
HTML articles powered by AMS MathViewer
- by Alan H. Schoenfeld
- Proc. Amer. Math. Soc. 60 (1976), 331-334
- DOI: https://doi.org/10.1090/S0002-9939-1976-0420537-5
- PDF | Request permission
Abstract:
Let $\mathcal {S} = \{ {X_\alpha };{f_{\alpha \beta }}:{X_\beta } \to {X_\alpha }\}$ be an inverse limit spectrum of compact Hausdorff spaces. We obtain necessary and sufficient conditions that there be a closed subspace W of a Cantor space and a family $\{ {f_\alpha }:W \to {X_\alpha }\}$ of continuous surjections such that for each pair $\alpha < \beta ,{f_{\alpha \beta }} \circ {f_\beta } = {f_\alpha }$. This result is applied to a special class of inverse spectra.References
- James Dugundji, Topology, Allyn and Bacon, Inc., Boston, Mass., 1966. MR 0193606
Bibliographic Information
- © Copyright 1976 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 60 (1976), 331-334
- MSC: Primary 54B25; Secondary 54C05
- DOI: https://doi.org/10.1090/S0002-9939-1976-0420537-5
- MathSciNet review: 0420537