Unknotting links in $S^{3}$ by maps
HTML articles powered by AMS MathViewer
- by Howard Lambert
- Proc. Amer. Math. Soc. 60 (1976), 327-330
- DOI: https://doi.org/10.1090/S0002-9939-1976-0420624-1
- PDF | Request permission
Abstract:
There exists a link ${L_0} = {L_{01}} \cup {L_{02}}$ such that for no strongly 1-1 map f on ${L_0}$ is it true that $f({L_{01}}),f({L_{02}})$ are unknotted.References
- R. H. Crowell, The derived module of a homomorphism, Advances in Math. 6 (1971), 210–238 (1971). MR 276308, DOI 10.1016/0001-8708(71)90016-8
- Wolfgang Haken, Some results on surfaces in $3$-manifolds, Studies in Modern Topology, Math. Assoc. America, Buffalo, N.Y.; distributed by Prentice-Hall, Englewood Cliffs, N.J., 1968, pp. 39–98. MR 0224071
- John Hempel, A surface in $S^{3}$ is tame if it can be deformed into each complementary domain, Trans. Amer. Math. Soc. 111 (1964), 273–287. MR 160195, DOI 10.1090/S0002-9947-1964-0160195-7
- William Jaco and D. R. McMillan Jr., Retracting three-manifolds onto finite graphs, Illinois J. Math. 14 (1970), 150–158 (German). MR 256370
- H. W. Lambert, Mapping cubes with holes onto cubes with handles, Illinois J. Math. 13 (1969), 606–615. MR 248787
- C. D. Papakyriakopoulos, On Dehn’s lemma and the asphericity of knots, Ann. of Math. (2) 66 (1957), 1–26. MR 90053, DOI 10.2307/1970113
- C. D. Papakyriakopoulos, On solid tori, Proc. London Math. Soc. (3) 7 (1957), 281–299. MR 87944, DOI 10.1112/plms/s3-7.1.281
Bibliographic Information
- © Copyright 1976 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 60 (1976), 327-330
- MSC: Primary 57A10; Secondary 57C45
- DOI: https://doi.org/10.1090/S0002-9939-1976-0420624-1
- MathSciNet review: 0420624