## Induction on symmetric axial maps and embeddings of projective spaces

HTML articles powered by AMS MathViewer

- by A. J. Berrick PDF
- Proc. Amer. Math. Soc.
**60**(1976), 276-278 Request permission

## Abstract:

A homotopy class of axial maps ${P^n} \times {P^n} \to {P^{n + k}}$ determines an invariant in ${\pi _n}({V_{n + k + 1,n + 1}})\;(2k \geqslant n + 2)$. If an axial map is symmetric and has trivial invariant it extends to a symmetric axial map ${P^{n + 1}} \times {P^{n + 1}} \to {P^{n + k + 1}}$. An immersion of ${P^n}$ in ${R^{n + k}}$ lifts to an immersion of ${S^n}$ in ${R^{n + k}}$ and so has a Smale invariant. For $j:{R^{n + k}}\hookrightarrow {R^{n + k + 2}},2k \geqslant n + 2$ (resp. $2k \geqslant n + 3$), any embedding $a:{P^n} \to {R^{n + k}}$ with trivial Smale invariant induces an embedding of ${P^{n + 1}}$ in ${R^{n + k + 2}}$ whose restriction to ${P^n}$ is regularly homotopic (resp. isotopic) to*ja*.

## References

- J. Adem, S. Gitler, and I. M. James,
*On axial maps of a certain type*, Bol. Soc. Mat. Mexicana (2)**17**(1972), 59–62. MR**336757** - A. J. Berrick,
*Axial maps with further structure*, Proc. Amer. Math. Soc.**54**(1976), 413–416. MR**397750**, DOI 10.1090/S0002-9939-1976-0397750-9
A. J. Berrick, S. Feder and S. Gitler, - S. Gitler and D. Handel,
*The projective Stiefel manifolds. I*, Topology**7**(1968), 39–46. MR**220307**, DOI 10.1016/0040-9383(86)90013-3 - André Haefliger and Morris W. Hirsch,
*Immersions in the stable range*, Ann. of Math. (2)**75**(1962), 231–241. MR**143224**, DOI 10.2307/1970171 - Michel A. Kervaire,
*Sur l’invariant de Smale d’un plongement*, Comment. Math. Helv.**34**(1960), 127–139 (French). MR**113230**, DOI 10.1007/BF02565932 - Stephen Smale,
*The classification of immersions of spheres in Euclidean spaces*, Ann. of Math. (2)**69**(1959), 327–344. MR**105117**, DOI 10.2307/1970186

*Symmetric axial maps and embeddings of projective spaces*, Bol. Soc. Mat. Mexicana (to appear).

## Additional Information

- © Copyright 1976 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**60**(1976), 276-278 - MSC: Primary 57D40
- DOI: https://doi.org/10.1090/S0002-9939-1976-0420661-7
- MathSciNet review: 0420661