The undecidability of a fundamental problem in cluster set theory
HTML articles powered by AMS MathViewer
- by J. A. Eidswick
- Proc. Amer. Math. Soc. 60 (1976), 116-118
- DOI: https://doi.org/10.1090/S0002-9939-1976-0423308-9
- PDF | Request permission
Abstract:
The undecidability of the existence of a nonmetrizable normal picket fence space is established and used to establish the undecidability of the following statement: Any family of approach curves (approaching a point in ${{\mathbf {R}}^2}$) along which cluster sets can be arbitrarily preassigned has a nonintersecting truncation.References
- R. H. Bing, Metrization of topological spaces, Canad. J. Math. 3 (1951), 175–186. MR 43449, DOI 10.4153/cjm-1951-022-3
- J. A. Eidswick, On some fundamental problems in cluster set theory, Proc. Amer. Math. Soc. 39 (1973), 163–168. MR 313454, DOI 10.1090/S0002-9939-1973-0313454-X
- J. A. Eidswick, A topological translation of a fundamental problem in cluster set theory, Proc. Amer. Math. Soc. 53 (1975), no. 1, 75–79. MR 376983, DOI 10.1090/S0002-9939-1975-0376983-0
- J. A. Eidswick, A crowded set of non-intersecting lines, Amer. Math. Monthly 80 (1973), 415. MR 314627, DOI 10.2307/2319088
- D. A. Martin and R. M. Solovay, Internal Cohen extensions, Ann. Math. Logic 2 (1970), no. 2, 143–178. MR 270904, DOI 10.1016/0003-4843(70)90009-4
- I. P. Natanson, Teoriya funkciĭ veščestvennoĭ peremennoĭ, Gosudarstv. Izdat. Tehn.-Teor. Lit., Moscow-Leningrad, 1950 (Russian). MR 0039790
- Fritz Rothberger, On some problems of Hausdorff and of Sierpiński, Fund. Math. 35 (1948), 29–46. MR 29958, DOI 10.4064/fm-35-1-29-46
- J. R. Shoenfield, Martin’s axiom, Amer. Math. Monthly 82 (1975), 610–617. MR 373887, DOI 10.2307/2319691
- L. A. Steen, Conjectures and counterexamples in metrization theory, Amer. Math. Monthly 79 (1972), 113–132. MR 309075, DOI 10.2307/2316532
Bibliographic Information
- © Copyright 1976 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 60 (1976), 116-118
- MSC: Primary 54E30; Secondary 04A15
- DOI: https://doi.org/10.1090/S0002-9939-1976-0423308-9
- MathSciNet review: 0423308