COMPRESSIBLE MAPS

JAY E. GOLDFEATHER

Abstract. Weingram has shown that if \(G \) is a finitely generated abelian group, then every nontrivial map \(f: \Omega S^{2n+1} \to K(G,2n) \) is incompressible; that is, \(f \) is not homotopic to a map whose image is contained in some finite-dimensional skeleton.

It is shown that a nontrivial map \(\Omega S^{2n+1} \to K(G,2n) \) may be compressible if \(G \) is not finitely generated. This result leads to some understanding of the obstructions to compressibility in Weingram's Theorem.

A map \(f: X \to Y \) is said to compress into \(A \subseteq Y \) if there is a map \(f': X \to A \) such that \(f \simeq i \cdot f' \), where \(i \) is inclusion. Weingram [4] has shown that if \(G \) is a finitely generated abelian group, then every nontrivial map \(f: \Omega S^{2n+1} \to K(G,2n) \) is incompressible, that is, \(f \) is not homotopic to a map whose image is contained in some finite-dimensional skeleton.

It will be shown that a nontrivial map \(\Omega S^{2n+1} \to K(G,2n) \) may be compressible if \(G \) is not finitely generated. Specifically, if \(P \) is a set of primes and \(Z_p \subseteq Q \) is the subgroup of \(P \)-local integers, then any map \(\Omega S^{2n+1} \to K(Q/Z_p,2n) \) compresses into the \((2n+1)\)-skeleton, provided \(2 \notin P \) or \(n = 1, 3 \).

Let \(M(G,k) \) denote a Moore space of type \((G,k)\). For the remainder of this paper, it will be assumed that \(2 \notin P \) or \(2 \in P \) and \(n = 1, 3 \).

The following two well-known theorems will be stated without proof:

Theorem (Adams [1]). \(M(Z_p,2n+1) \) is an H-space.

Theorem (Stasheff [3]). Let \(X \) and \(W \) be H-spaces and let \(F: X \to W \) be an H-map. Let \(\Omega W \to Y \to X \) be the fibration induced by \(f \). Then \(Y \) is an H-space.

Lemma 1. Any map \(M(Z_p,2n+1) \to K(Q,2n+1) \) is homotopic to an H-map.

Proof. The obstructions to a map \(f: X \to Y \) being homotopic to an H-map lie in \(H^i(X \wedge X; \pi(Y)) \). Since

\[\pi_i(K(Q,2n+1)) = 0 \quad \text{for} \ i \neq 2n+1 \]

and

\[H^{2n+1}(M(Z_p,2n+1) \wedge M(Z_p,2n+1); G) = 0 \quad \text{for any} \ G, \]

all obstructions lie in zero groups.
In view of the preceding lemma, it will be assumed that any given map
\(f: M(Z_p, 2n + 1) \to K(Q, 2n + 1) \) is an \(H \)-map.

Let \(f \) be induced by the natural embedding \(Z_p \subseteq Q \).

Proposition 2. Let \(K(Q, 2n) \to E \to M(Z_p, 2n + 1) \) be the fibration induced
by \(f \). Then \(E \) is an \(H \)-space.

Proof. This is an immediate consequence of the above two theorems and
Lemma 1.

Theorem 3.

\[
\tilde{H}_i(E; Z) = \begin{cases}
Q/Z_p, & i = 2n, \\
0, & \text{otherwise.}
\end{cases}
\]

Proof. (Porter [2] has proved a similar theorem when the base space is \(S^3 \))
\(H_\bullet(K(Q, 2n); Z) \) is a polynomial algebra over \(Z \) on one generator in dimension \(2n \) tensored with \(Q \). Since \(f \) is induced by the natural embedding of \(Z_p \subseteq Q \), the Serre exact sequence

\[
H_{2n+1}(E) \to H_{2n+1}(M(Z_p, 2n+1)) \to H_{2n}(K(Q, 2n)) \to H_{2n}(E) \to 0
\]

reduces to

\[
0 \to Z_p \to Q \to H_{2n}(E) \to 0
\]

and, hence, \(H_{2n}(E) = Q/Z_p \).

In the homology spectral sequence, the only nonzero differential is \(d^{2n+1} \)
which is an isomorphism for total degrees greater than \(2n + 1 \) since \(Z_p \otimes Q \)
\(\cong Q \). Hence, \(H_i(E) = 0 \) for \(i > 2n + 1 \).

Remark. \(E \) is homotopic to a \((2n+1)\)-dimensional Moore space

\(M(Q/Z_p, 2n) \).

Proposition 4. \(K(Q/Z_p, 2n) \) is not homotopic to a finite-dimensional complex.

Proof. The exact sequence \(0 \to Z_p \to Q \to Q/Z_p \to 0 \) induces a fibration

\[K(Q/Z_p, 2n) \to K(Z_p, 2n + 1) \to K(Q, 2n + 1). \]

It is well known that \(K(Q, 2n + 1) \) is homotopic to a finite-dimensional complex. Hence if \(K(Q/Z_p, 2n) \) were also homotopic to a finite-dimensional complex, it would imply that \(H^k(K(Z_p, 2n + 1); Z_p) = 0 \) for all \(k \) greater than some integer. It suffices to show, then, that \(H^k(K(Z_p, 2n + 1); Z_p) \) is nonzero for infinitely many \(k \), where \(p \in P \).

Let \(\iota \) be the fundamental class in \(H^{2n+1}(K(Z, 2n + 1); Z_p) = \text{Hom}(Z, Z_p) \).
It is well known that there are an infinite number of Steenrod operations \(\Theta_I \)
such that \(\Theta^I \iota \neq 0 \). (\(I \) denotes an admissible sequence.) Hence it suffices to show that if \(f: K(Z, 2n + 1) \to K(Z_p, 2n + 1) \) is the natural inclusion, then
THEOREM 5. Every nontrivial map \(\Omega S^{2n+1} \to K(Q/ZP, 2n) \) compresses into the \((2n+1)\)-skeleton.

PROOF. Any map \(f: \Omega S^{2n+1} \to K(Q/ZP, 2n) \) is homotopic to a map \(r \cdot \Omega Sg \), where \(g: S^{2n} \to K(Q/ZP, 2n) \) and \(r \) is the retraction \(\Omega SK(Q/ZP, 2n) \to K(Q/ZP, 2n) \).

But every such map \(g \) factors through \(M(Q/ZP, 2n) \) so that

\[
S^{2n} \xrightarrow{g_1} M(Q/ZP, 2n) \xrightarrow{g_2} K(Q/ZP, 2n)
\]

is nontrivial where

\[
g \simeq g_2 \cdot g_1.
\]

By Theorem 3 and Proposition 2, \(M(Q/ZP, 2n) \) is an \(H \)-space so that \(g_1 \) extends to \(\bar{g}_1: \Omega S^{2n+1} \to M(Q/ZP, 2n) \). Then \(f \simeq g_2 \cdot \bar{g}_1 \), so \(f \) compresses into the \((2n+1)\)-skeleton.

Observe that if \(\mathbb{P} = \{p\} \), then \(Q/ZP = Z_{px} = \lim_r Z_{p^r} \) induced by the inclusion \(Z_{p^r} \to Z_{p^{r+1}} \). Let \(G \) be a finitely-generated odd torsion group so that \(G = \bigoplus_{i=1}^m Z_{p_i^n} \). Let \(P = \{p_1, \ldots, p_m\} \) and \(G_{k+1} = \bigoplus_{i=1}^m Z_{p_i^{n+k}} \). Then \(Q/ZP \cong \lim_k G_k \).

Since \(\pi_{2n+1}(M(G_r, 2n)) = G_r \otimes Z_2 = 0 \), and \(M(G_r, 2n) \) can be thought of as the \((2n+1)\)-skeleton of \(K(G_r, 2n) \), the obstructions to extending

\[
S^{2n} \to K(G_r, 2n)^{(2n+1)}
\]

to \(\Omega S^{2n+1} \to K(G_r, 2n)^{(2n+1)} \) are the obstructions to extending

\[
S^{2n} \to M(G_r, 2n)
\]
to \(\Omega S^{2n+1} \to M(G_r, 2n) \).

Let \(j_r, m: M(G_r, 2n) \to M(G_{r+m}, 2n) \) be inclusion and let \(j: S^{2n} \to M(G_r, 2n) \).

THEOREM 6. For every \(k \) and \(r \), there is an \(m \) such that \(j_r, m \cdot j \) extends to \((S^{2n})_k \), the \(k \)th reduced product of \(S^{2n} \).

PROOF. Let \(j_{r, \infty}: M(G_r, 2n) \to M(Q/ZP, 2n) \) be the inclusion. Since \(M(Q/ZP, 2n) \) is an \(H \)-space, it follows that \(j_{r, \infty} \cdot j \) extends to \((S^{2n})_k \) for all \(k \).

Let \(j \) be such an extension. Since \((S^{2n})_k \) is compact, image \(j \subseteq M(G_{r+m}, 2n) \) for some \(m \) and, hence, \(j \) is an extension of \(j_{r, m} \cdot j \).

Department of Mathematics, University of Wisconsin, Milwaukee, Wisconsin 53201