SOME NOWHERE EQUICONTINUOUS
HOMEOMORPHISMS1

KI WOONG KIM

Abstract. It is shown that a nowhere equicontinuous homeomorphism can
be defined on a compact polyhedron \(X \) if and only if \(X \) does not have cell
decomposition which contains a principal 1-cell. It is also shown that for
each locally connected contractible continuum \(C \) in the plane, there is a
nowhere equicontinuous homeomorphism \(h_c \) on a disk in the plane such that
the fixed point set of \(h_c \) is \(C \).

1. Introduction. Let \(X \) be a metric space with a metric \(d \) and \(h \) a
homeomorphism on \(X \) (a homeomorphism of \(X \) onto itself). We say that \(h \) is
equicontinuous at \(x \in X \) if \(\{h^n|n \in \mathbb{Z}\} \) is an equicontinuous family at \(x \). The
set \(\{x \in X|h \text{ is equicontinuous at } x\} \) is called the regular set of \(h \) and its
complement in \(X \) is called the irregular set of \(h \). If the regular set of \(h \) is empty,
we say that \(h \) is a nowhere equicontinuous homeomorphism (NEH). Homeomor-
phisms \(h_1 \) and \(h_2 \) on \(X \) are said to be topologically equivalent if there is a
homeomorphism \(k \) on \(X \) such that \(h_1 = k^{-1}h_2k \).

It is a known fact that neither the closed unit interval nor the circle admit
a NEH \([2]\). In fact, it is true that if \(h: X \to X \) is a homeomorphism on \(X \),
where \(X \) is either the closed unit interval or the circle, then the irregular set of
\(h \) is nowhere dense in \(X \). It can be easily shown that, for compact spaces, the
property of admitting a NEH is topological. In \(\S 2 \) of this paper we show that
a compact polyhedron admits a NEH if and only if it does not have a cell
decomposition which contains a principal 1-cell (Theorem 5). We also show
that for each locally connected contractible continuum \(C \) in the interior of the
unit disk, with \(\text{diam} \ (C) > 0 \), there is a NEH \(h^* \) on the unit disk such that
\(\text{Fix} (h^*) = C \) where \(\text{Fix} (h^*) = \{x|h^*(x) = x\} \) (Theorem 7).

Throughout this paper we use such standard terminologies as orbit, dense
orbit, periodic point and refer readers to \([1]\) for definitions. We also use some
standard terminologies of piecewise linear topology and refer readers to \([4]\)
for their definitions. The symbols \(I, B^n, S^n, \partial X \) and \(\partial X \) are used to denote the
closed unit interval \([0, 1]\), the \(n \)-ball, the \(n \)-sphere, combinatorial interior of \(X \)
and the combinatorial boundary of \(X \) respectively. A principal \(n \)-cell in a complex is an \(n \)-cell which intersects higher dimensional cells in a subset of its boundary. All spaces considered here are metric spaces and a map is a continuous function.

The author wishes to express his gratitude to Professor P. F. Duvall, Jr. for helpful suggestions.

2. The existence of NEH's. It can be easily shown that the homeomorphism \(h \) on \(S^1 \), the unit circle in the complex plane, defined by \(h(e^{i\theta}) = e^{i(\theta + 2\pi t)} \), \(0 \leq t \leq 1 \), is periodic with the period \(q \) if \(t \) is rational and \(t = P/q \) in the lowest term, and each point of \(S^1 \) has dense orbit in \(S^1 \) under \(h \) if \(t \) is irrational. Now we proceed with the construction of a NEH on some compact polyhedron.

Lemma 1. Define \(h: S^1 \times I \to S^1 \times I \) by \(h(e^{i\theta}, t) = (e^{i(\theta + 2\pi t)}, t) \). Then \(h \) is a NEH on \(S^1 \times I \).

Proof. Assume that the metric \(d \) on \(S^1 \times I \) is the product metric. Let \(x \in S^1 \times I \) and write \(x = (e^{i\theta}, t), 0 \leq \theta \leq 2\pi, t \in I \). Take \(\varepsilon = \sqrt{2} \). For each \(\delta \), take \(t' \) such that \(0 < |t - t'| < \min\{\delta, \frac{1}{4}\} \). Then \(0 < d((e^{i\theta}, t), (e^{i\theta}, t')) < \delta \) and there is an integer \(n \) such that \(\frac{1}{4} \leq n(t - t') \leq \frac{1}{2} \). Thus

\[
d(h^n(e^{i\theta}, t), h^n(e^{i\theta}, t')) = d((e^{i(\theta + 2\pi nt)}, t), (e^{i(\theta + 2\pi nt'}), t'))^2 \\
\geq d((e^{i(\theta + 2\pi nt)}, t), (e^{i(\theta + 2\pi nt')}, t'))^2 = 2 \sin n\pi(t - t') \geq \sqrt{2}
\]

by the choice of \(n \).

Corollary 2. Let \(X \) be a space. If there is a map \(f: X \to I \) such that \(\text{Int} (f^{-1}(t)) \), the point set interior of \(f^{-1}(t) \), is empty, for each \(t \in I \), then \(S^1 \times X \) admits a NEH.

Proof. Assume that \(S^1 \times X \) has the product metric. Define \(g: S^1 \times X \to S^1 \times X \) by \(g((e^{i\theta}, x)) = (e^{i(\theta + \pi f(x))}, x) \). Take \(\varepsilon = \sqrt{2} \). For each \((e^{i\theta}, x) \in S^1 \times X \) and any neighborhood \(U \) of \((e^{i\theta}, x) \), there is a \(\delta > 0 \) such that the \(\delta \)-neighborhood \(N_\delta(x) \) of \(x \) is contained in \(\pi_x(U) \), where \(\pi_x \) is the projection map of \(S^1 \times X \) onto \(X \). Thus, there is a point \(y \neq x \) in \(N_\delta(x) \) such that \(f(x) \neq f(y) \), since \(\text{Int} (f^{-1}(t)) = \emptyset \) for each \(t \). Therefore \(0 < |f(x) - f(y)| < 1 \) so that \(\frac{1}{2} < n(f(x) - f(y)) \leq 1 \) for some integer \(n \). Then

\[
d(h^n(e^{i\theta}, x), h^n(e^{i\theta}, y)) = d((e^{i(\theta + \pi nf(x))}, x), (e^{i(\theta + \pi nf(y))}, y))^2 \\
\geq d((e^{i(\theta + \pi nf(x))}, x), (e^{i(\theta + \pi nf(y))}, x)) \geq \sqrt{2}.
\]

Lemma 3. There is a NEH \(\xi_2 \) on \(B^2 \) such that \(\xi_2 \upharpoonright \partial B^2 \), the restriction of \(\xi_2 \) to \(\partial B^2 \), is \(1_{\partial B^2} \), the identity map of \(\partial B^2 \).

Proof. Let \(f: S^1 \times I \to B^2 \) be a map which satisfies the following condi-
tions: \(f|_{S^1 \times [0,1]} \) is a homeomorphism of \(S^1 \times (0,1) \) onto \(B^2 - \{(x,0)|-\frac{1}{2} \leq x \leq \frac{1}{2}\} \), \(f((e^\theta,0)) = f((e^{(2\pi - \theta)})) \), \(0 \leq \theta \leq 2\pi \), \(f((e^{\pi},0)) = (-\frac{1}{2},0) \), \(f((e^{0},0)) = (\frac{1}{2},0) \) and \(f|_{\{(e^\theta,0)|0 \leq \theta \leq \pi\}} \) is a homeomorphism of \(\{(e^\theta,0)|0 \leq \theta \leq \pi\} \) onto \(\{(x,0)|-\frac{1}{2} \leq x \leq \frac{1}{2}\} \). Take \(h: S^1 \times I \rightarrow S^1 \times I \) defined in Lemma 1. Define \(\xi_2: B^2 \rightarrow B^2 \) by \(\xi_2(x) = fh^{-1}(x) \). Then it is easy to see that \(\xi_2 \) is a homeomorphism on \(B^2 \). If \(p \in B^2 - \{(x,0)|-\frac{1}{2} \leq x \leq \frac{1}{2}\} \) then \(p = f((e^\theta,0)) \) for some \(t \neq 0 \). Since \(f|_{S^1 \times [t/2,1]} \) is a homeomorphism of \(S^1 \times [t/2,1] \) onto an annulus \(A \subset B^2 - \{(x,0)|-\frac{1}{2} \leq x \leq \frac{1}{2}\} \), both \(f|_{S^1 \times [t/2,1]} \) and \(f^{-1}|_A \) are uniformly continuous. Thus, if \(\xi_2|_A \) were equicontinuous at \(p \) then \(h|_{S^1 \times [t/2,1]} \) would be equicontinuous at \((e^\theta,t) \). Therefore \(\xi_2|_A \) is not equicontinuous at \(p \) so that \(\xi_2 \) is not equicontinuous at \(p \). If \(p \in \{(x,0)|-\frac{1}{2} \leq x \leq \frac{1}{2}\} \), then \(\xi_2(p) = p \). Choose \(\varepsilon > 0 \) so that \(N_{2\varepsilon}(p) \) does not contain \(\{(x,0)|-\frac{1}{2} \leq x \leq \frac{1}{2}\} \), then \(\xi_2(p) = p \). Then there is an \(\eta \) and a neighborhood \(U \) of \(e^n \) such that \(\pi \times [0,1] \subset S^1 \times [0,1] \). Then \(f^{-1}(N_{\eta}(p)) \) which has dense orbit in \(S^1 \times [t] \) under \(h \). Then there is an integer \(n \) such that \(h^n((e^\theta,t)) \in U \times \{t\} \). Therefore \(\xi_2(f((e^\theta,t))) \notin N_{\eta}(p) \) and \(f((e^\theta,0)) \in N_{\eta}(p) \) which shows that \(\xi_2 \) is not equicontinuous at \(p \). It is clear that \(\xi_2|_{B^2} = i_3|_{B^2} \).

Lemma 4. For each \(n \geq 2 \), \(B^n \) admits a NEH \(\xi_n \) such that \(\xi_n|_{B^n} = i_3|_{B^n} \).

Proof. We prove this lemma by induction on \(n \). By Lemma 3, \(B^2 \) admits such a homeomorphism. Assume that there is such a homeomorphism \(\xi_{n-1} \) on \(B^{n-1} \). For each \(\theta, 0 \leq \theta < 2\pi \), let

\[
B^{n-1}_\theta = \left\{(x_1, \ldots, x_{n-2}, x_{n-1} \cos \theta, x_{n-1} \sin \theta) \mid \sum_{i=1}^{n-1} x_i^2 \leq 1 \text{ and } x_{n-1} > 0 \right\}.
\]

Then \(B^{n-1}_\theta \) is the closed half of the unit ball sitting in the subvector space in \(R^n \) of dimension \(n-1 \) which is determined by \(R^{n-2} \) and the vector \((0, \ldots, 0, \cos \theta, \sin \theta) \in R^n \). Thus it is easy to see that

\[
B^n = \bigcup_{0 \leq \theta < 2\pi} B^{n-1}_\theta \text{ and } B^{n-1}_\theta \cap B^{n-1}_{\theta'} = B^{n-2}
\]

for \(\theta \neq \theta' \). Since \((B^{n-1}_\theta, \partial B^{n-1}) \) and \((B^{n-1}_{\theta'}, \partial B^{n-1}_{\theta'}) \) are homeomorphic as compact pairs, there is a NEH \(\psi_{n-1}: B^{n-1}_{\theta} \rightarrow B^{n-1}_{\theta'} \) such that \(\psi_{n-1}|_{\partial B^{n-1}_\theta} = i_{3B^{n-1}_\theta} \). Define \(\xi_n: B^n \rightarrow B^n \) by \(\xi_n|_{B^{n-1}_\theta} = \rho_\theta \psi_{n-1} \rho_\theta^{-1} \) where \(\rho_\theta: B^{n-1}_0 \rightarrow B^{n-1}_\theta \) is the homeomorphism defined by

\[
\rho_\theta((x_1, \ldots, x_{n-2}, x_{n-1}, 0)) = (x_1, \ldots, x_{n-2}, x_{n-1} \cos \theta, x_{n-1} \sin \theta).
\]

Then \(\xi_n \) is a well-defined function since \(\rho_\theta \psi_{n-1} \rho_\theta^{-1}|_{B^{n-2}} = 1|_{B^{n-2}} \) for any \(\theta \). Let \(x \in B^n - B^{n-2} \). Then a sequence

\[
\left\{x^i = (x_1^i, \ldots, x_{n-2}^i, x_{n-1}^i \cos \theta^i, x_{n-1}^i \sin \theta^i)\right\}_{i=1}^\infty
\]

converges to
\[x = (x_1, \ldots, x_{n-2}, x_{n-1} \cos \theta, x_{n-1} \sin \theta) \]

if and only if \(((x'_1, \ldots, x'_{n-2}, x'_{n-1}))_{i=1}^{\infty} \) converges to \((x_1, \ldots, x_{n-2}, x_{n-1}) \) and \((\theta)_{i=1}^{\infty} \) converges to \(\theta \) up to modulo \(2\pi \). Thus, the continuity of \(\zeta_n \) at \(x \in B^n - B^{n-2} \) is clear. Suppose \(x \in B^{n-2} \). Then a sequence \((x'_i)_{i=1}^{\infty} \) converges to \(x \) if and only if \((\rho_\theta^{-1}(x'_i))_{i=1}^{\infty} \) converges to \(x \), since \(d(x, \rho_\theta^{-1}(x'_i)) = d(x, x'_i) \) for each \(i \). Therefore \(\zeta_n \) is continuous at \(x \). Since the map \(\zeta'_n: S^n \to B^n \) defined by \(\zeta'_n|_{B^{n-1}} = \rho_\theta \psi_{n-1} \rho_\theta^{-1} \) is the inverse of \(\zeta_n \), \(\zeta_n \) is a homeomorphism. Furthermore, \(\zeta'_n|_{B^{n-1}} \) is the identity on \(\partial B^{n-1} \) for each \(\theta \) so that \(\zeta_n|_{\partial B^n} = 1_{\partial B^n} \) since \(\partial B^n \subset \bigcup_{0<\theta<\pi} \partial B^\theta \). \(\zeta_n \) is NEH since \(\zeta'_n|_{B^{n-1}} \) is NEH for each \(\theta \).

Theorem 5. A compact polyhedron \(P \) admits a NEH if and only if \(P \) contains no principal 1-cells.

Proof. To prove the necessity, suppose that \(P \) contains a principal 1-cell and suppose that there is a NEH \(h \) on \(P \). Let \(K \) be a triangulation of \(P \), \(K_1 \) the collection of principal 1-cells in \(K \) and write \(|K_1| = P_1 \). Then \(h(P_1) = P_1 \). Since \(P_1 \cap |K - K_1| \) is finite, the regular set of \(h|_{P_1} \) is at most finite. But by using the fact that the irregular set of a homeomorphism on either a circle or a closed 1-cell is nowhere dense, we can show that the irregular set of a homeomorphism on \(P_1 \) is nowhere dense. Therefore \(h \) cannot be a NEH on \(P \).

If \(P \) does not contain any principal 1-cell, then we can write \(P = \bigcup \{\sigma_j\}_{j=1}^k \) where \(\sigma_j \) is a principal \(n \)-simplex with \(n > 2 \) in some triangulation \(\{\sigma_i\}_{i=1}^m \). Therefore, since \(\zeta_n|_{\partial B^n} = 1_{\partial B^n} \), we can define a NEH \(h \) on \(P \) by taking \(h \) to be \(g_n \zeta_n g_n^{-1} \) on each principal cell \(\sigma_j \) of dimension \(n \) where \(g_n: B^n \to \sigma_j \) is a homeomorphism of \(B^n \) onto \(\sigma_j \).

Lemma 6. Let \(C \) be a locally connected contractible continuum in \(\text{Int}(B^2) \), where \(B^2 \subset \mathbb{R}^2 \). If \(C \) is nowhere dense in \(\mathbb{R}^2 \), then there is a map \(f \) from \(S^1 \) onto \(C \) such that the pair \((M_f, C) \) is homeomorphic to \((B^2, C) \) where \(M_f \) denotes the mapping cylinder associated with \(f \).

Proof. Since \(C \) is strongly cellular [5], there is a circle \(S \) and a homotopy \(H \) of \(S \) in \(\mathbb{R}^2 \) such that

1. \(H_0 \) is the identity,
2. \(H_t \) is an embedding for \(t < 1 \),
3. \(H_t(S) \cap H_u(S) = \emptyset \) for \(t \neq u \), and
4. \(H_1(S) = C \) [3, Theorem 2.1].

By the Schoenflies theorem, \(S \) bounds a disk. Therefore we may assume that \(S = S^1 \). It is clear, from the properties of \(H \), that \(H|_{S^1 \times [0,1]} \) is an embedding and \(\text{Im}(H) \subset B^2 \). To prove that \(\text{Im}(H) = B^2 \), suppose that there is \(x \in \text{Int}(B^2) - C \) such that \(\text{Im}(H) \subset B^2 - \{x\} \). Then there is a retraction \(\gamma: B^2 - \{x\} \to S^1 \). Now, \(\gamma H_t \) is homotopic to \(\gamma H_0 = 1_{S^1} \). But, since \(C \) is contractible, \(\gamma H_t \) is null homotopic. Thus, we obtain a contradiction. By taking \(f = H_1 \), we see that \((M_f, C) \) is homeomorphic to \((B^2, C) \).
Theorem 7. For each locally connected contractible continuum C which is nowhere dense in \(\text{Int}(B^2) \) with \(\text{diam}(C) > 0 \), there is a NEH \(h_C \) on \(B^2 \) such that \(\text{Fix}(h_C) = \{ x \in B^2 | h_C(x) = x \} = C \).

Proof. Let \(f \) be the map in Lemma 6. Since \(f \) is a closed map from \(S \) onto \(C \), \(C \) has the identification topology with respect to \(f \). Thus, \((M_f, C) \) is homeomorphic to \((S^1 \times I/\sim, \{ [e^{i\theta}, 1] | e^{i\theta} \in S^1 \}) \) where \(\sim \) is the equivalence relation on \(S^1 \times I \) induced by the map \(H \) which is defined in Lemma 6 and \([x, t] \) denotes the equivalence class of \((x, t) \). Write \(\{ [e^{i\theta}, 1] | e^{i\theta} \in S^1 \} = C' \). Then it suffices to show the existence of NEH \(h^* \) on \(S^1 \times I/\sim \) with \(\text{Fix}(h^*) = C' \). Let \(p: S^1 \times I \to S^1 \times I/\sim \) be the projection and \(h: S^1 \times I \to S^1 \times I \) be defined by \(h(e^{i\theta}, t) = (e^{i(\theta + \pi(1-t))}, t) \). Then, by the argument used in Lemma 1, \(h \) is a NEH on \(S^1 \times I \) and \(\text{Fix}(h) = S^1 \times \{ 1 \} \). Define \(h^*: S^1 \times I/\sim \to S^1 \times I/\sim \) by \(h^*([e^{i\theta}, t]) = ph(e^{i\theta}, t) \). Then, since \(h^* \) is a well defined one-to-one correspondence, it is a homeomorphism. Since \(p|_{S^1 \times \{ 0, 1 \}} \) is a homeomorphism and \(S^1 \times [0, 1] \) is compact for each \(t < 1 \), it is clear that \(\{ [e^{i\theta}, s] \in S^1 \times I/\sim | s < 1 \} \subset \text{Irr}(h^*) \). To show that \([e^{i\theta}, 1] \in \text{Irr}(h^*) \), note first that \(\text{Fix}(h^*) = C' \) and \(\text{diam}(C') > 0 \). For each neighborhood \(U \) of \([e^{i\theta}, 1] \), \(U \) contains \([e^{i\theta}, t] \) for some irrational \(t \). Since the orbit of \((e^{i\theta}, t) \) under \(h \) is dense in \(S^1 \times \{ t \} \), the orbit of \([e^{i\theta}, t] \) under \(h^* \) is dense in \(\{ [e^{i\theta}, t] | 0 \leq \theta \leq 2\pi \} \). Now, if we take \(\delta = \frac{1}{2} \text{diam}(C') \), then we can find \(n \in Z \) such that \(d(h^*(n[e^{i\theta}, 1], h^*(e^{i\theta}, t)) > \delta \).

If \(h_1 \) and \(h_2 \) are topologically equivalent homeomorphisms then \(\text{Fix}(h_1) \) is homeomorphic to \(\text{Fix}(h_2) \). Consequently Theorem 7 implies the existence of uncountably many conjugacy classes of nowhere equicontinuous homeomorphisms.

References

Department of Mathematics, Oklahoma State University, Stillwater, Oklahoma 74074

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use