Necessary and sufficient conditions for $L^{1}$ convergence of trigonometric series
HTML articles powered by AMS MathViewer
- by John W. Garrett and Časlav V. Stanojević
- Proc. Amer. Math. Soc. 60 (1976), 68-71
- DOI: https://doi.org/10.1090/S0002-9939-1976-0425480-3
- PDF | Request permission
Abstract:
It is shown that for the class of cosine series satisfying $a(n)\log n = o(1)$ and $\Delta a(n) \geqslant 0$ that integrability and ${L^1}$ convergence occur together. Relaxing the monotonicity to bounded variation we show that our previous result cannot be extended.References
- John W. Garrett and Časlav V. Stanojević, On $L^{1}$ convergence of certain cosine sums, Bull. Amer. Math. Soc. 82 (1976), no. 1, 129–130. MR 394001, DOI 10.1090/S0002-9904-1976-13990-0
- S. A. Teljakovskiĭ, A certain sufficient condition of Sidon for the integrability of trigonometric series, Mat. Zametki 14 (1973), 317–328 (Russian). MR 328456
Bibliographic Information
- © Copyright 1976 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 60 (1976), 68-71
- MSC: Primary 42A20
- DOI: https://doi.org/10.1090/S0002-9939-1976-0425480-3
- MathSciNet review: 0425480