Convolutions of continuous measures and sets of nonsynthesis
HTML articles powered by AMS MathViewer
- by Sadahiro Saeki
- Proc. Amer. Math. Soc. 60 (1976), 215-220
- DOI: https://doi.org/10.1090/S0002-9939-1976-0430680-2
- PDF | Request permission
Abstract:
Let G be a nondiscrete LCA group, and $A(G)$ the Fourier algebra of G. It is shown that if E is a closed subset of G such that $(\mu \ast \nu )(E) \ne 0$ for some $\mu$ and $\nu \in {M_c}(G)$, then E is a set of analyticity and contains a set of nonsynthesis for $A(G)$.References
- Colin C. Graham, Compact independent sets and Haar measures, Proc. Amer. Math. Soc. 36 (1972), 578–582. MR 313447, DOI 10.1090/S0002-9939-1972-0313447-1
- S. Hartman and C. Ryll-Nardzewski, Quelques résultats et problèmes en algèbre des mesures continues, Colloq. Math. 22 (1971), 271–277 (French). MR 284769, DOI 10.4064/cm-22-2-271-277
- James Michael Rago, Convolutions of continuous measures and sums of an independent set, Proc. Amer. Math. Soc. 44 (1974), 123–128. MR 330921, DOI 10.1090/S0002-9939-1974-0330921-4
- Walter Rudin, Fourier analysis on groups, Interscience Tracts in Pure and Applied Mathematics, No. 12, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York-London, 1962. MR 0152834
- D. L. Salinger and N. Th. Varopoulos, Convolutions of measures and sets of analyticity, Math. Scand. 25 (1969), 5–18. MR 264334, DOI 10.7146/math.scand.a-10935
- N. Th. Varopoulos, Tensor algebras and harmonic analysis, Acta Math. 119 (1967), 51–112. MR 240564, DOI 10.1007/BF02392079
Bibliographic Information
- © Copyright 1976 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 60 (1976), 215-220
- MSC: Primary 43A45; Secondary 43A05
- DOI: https://doi.org/10.1090/S0002-9939-1976-0430680-2
- MathSciNet review: 0430680