NEW PROOF OF A DENSITY THEOREM
FOR THE BOUNDARY OF A CLOSED SET

PETER VOLKMANN

ABSTRACT. From Browder [1] the following theorem is known: Let \(F \) be a closed subset of the Banach space \(E \); then the set \(R \) of points \(x \in \partial F \), such that \(F \cap C = \{x\} \) for at least one convex \(C \) with nonempty interior, is dense in \(\partial F \). A proof of this will be given by means of a theorem of Martin [4] on ordinary differential equations.

Proofs of the just quoted result have been given by Browder [1], [2], Danes [3], and Phelps [5]. A completely different proof runs as follows: Assume the statement of Browder’s theorem to be false. Then there exists a point \(p \in \partial F \) and an open, convex neighbourhood \(U \) of \(p \) such that

\[
R \cap \partial F \cap U = \emptyset.
\]

Now, for every function \(f: \mathbb{R} \to E \) the formula

\[
\lim_{h \to 0^+} \frac{1}{h} |F, x + hf(x)| = 0 \quad (x \in \partial F \cap U)
\]

is valid (see below; \(|F, y|\) denotes the distance from \(F \) to the point \(y \)). Choose \(q \in U \setminus F \) and define

\[
f(x) = q - p \quad (x \in U).
\]

Then the unique solution of the initial value problem

\[
u(0) = p, \quad u'(t) = f(u(t)) \quad (0 \leq t \leq 1)
\]

is \(u(t) = (1 - t)p + tq \), but since \(f \) is Lipschitz-continuous and (2) holds, \(u(t) \) must remain in \(F \) by Theorem 4 of Martin [4]. This yields \(q = u(1) \in F \), leading to a contradiction.

To prove (2), fix \(x \in \partial F \cap U \) and let \(\epsilon, h_0 > 0 \). Then

\[
C_{\epsilon, h_0} = \{x + hf(x) + hes \mid 0 < h < h_0, \|s\| < 1\}
\]

is a convex set with nonempty interior. By (1), \(x \not\in R \), and so there is some \(y \in F \cap C_{\epsilon, h_0}, y \neq x \), i.e.

\[
y = x + hf(x) + hes, \quad \text{where } 0 < h < h_0, \|s\| < 1.
\]

Hence

\[
|F, x + hf(x)| \leq \|x + hf(x) - y\| = he\|s\| < he,
\]

yielding
\((1/h)|F, x + hf(x)| \leq \varepsilon \) for some \(h \in (0, h_0] \).

Since \(\varepsilon \) and \(h_0 \) have been chosen arbitrarily, (2) is established.

Acknowledgement. The author is deeply indebted to Professor R. M. Redheffer for his encouragement to publish this note.

References

Mathematisches Institut I, Universität Karlsruhe (TH), 75 Karlsruhe 1, Federal Republic of Germany