A NOTE ON THE ESSENTIAL SELFADJOINTNESS OF CLASSICAL CONSTANTS OF MOTION

BENT ØRSTED

Abstract. It is shown how the results by Chernoff [1] and also Rauch and Taylor [2] on the essential selfadjointness of powers of generators of hyperbolic mixed problems can be combined with results by Poulsen [3] to give essential selfadjointness of symmetric operators commuting with the hyperbolic problem, as specified below.

Let M be a complete Riemannian manifold with volume element dv and ξ a hermitian bundle over M with $\langle \cdot, \cdot \rangle_x$ the inner product in the fiber over x. As in [1] we consider a first-order symmetric hyperbolic operator L on $C^\infty(\xi)$, all C^∞ sections of ξ, of the form

$$L = \sum_{i=1}^{n} A_i(x) \frac{\partial}{\partial x_i} + B(x).$$

Under the assumption that the local velocity of propagation of solutions to $\frac{\partial u}{\partial t} = Lu$ is sufficiently low, we get [1] that this has unique global solutions given initial data in $C^\infty_0(\xi)$, all C^∞ sections with compact support. Hence we infer the existence of a continuous unitary one-parameter group $V(t)$ in $H = L^2(\xi)$ such that

1. $\frac{d}{dt}V(t)u = VL(t)u = V(t)Lu,$
2. $V(t)u \in C^\infty_0(\xi)$

for all $u \in C^\infty_0(\xi)$. In particular, the generator of $V(t)$ contains iL.

Lemma 1. Let U be a continuous unitary representation of a Lie group G in a Hilbert space H and D_∞ the space of C^∞ vectors for U [3]; assume that D is a group-invariant dense subspace of H contained in D_∞. Suppose that T is a symmetric operator defined on D_∞ such that $TU(g) \supseteq U(g)T$ for all $g \in G$. Then T is essentially selfadjoint on D.

Proof. From [3, Theorem 1.3] it follows immediately that D is dense in D_∞ with its natural Fréchet topology, and from [3, Corollary 2.2] that T is...
essentially selfadjoint. Let \((D_\infty, \tau)\) denote \(D_\infty\) equipped with its natural Fréchet topology and consider \(T\) as an operator \(S\) from \((D_\infty, \tau)\) to \(H\); since \(T\) is symmetric it is closable and it follows easily that \(S\) is closed. By the closed graph theorem \(S\) is actually continuous, so for each \(y \in D_\infty\) there is a sequence \(\{x_n\}_{n \in \mathbb{N}} \subseteq D\) such that \(\{x_n\}\) converges to \(y\) in \(D_\infty\) and \(\{Tx_n\}\) converges to \(Ty\) in \(H\). But this means that \(T \uparrow D_\infty \subseteq (T \uparrow D)^\perp\), and, hence, \((T \uparrow D)^\perp = (T \uparrow D_\infty)^\perp\) is selfadjoint. Q.E.D.

Corollary 2. Let \(T\) be a symmetric operator in \(H = L^2(\xi)\) defined on the \(C^\infty\) vectors for the group \(V(t)\) above. Suppose that \(TV(t) \supseteq V(t)T\) \((T \in \mathbb{R})\). Then \(T\) is essentially selfadjoint on \(C^\infty_0(\xi)\).

Proof. As the domain \(D\) we take \(C^\infty_0(\xi)\) and directly apply the lemma. Q.E.D.

If we interpret \(iL\) as the Hamiltonian of a quantum mechanical system with Hilbert state space \(H\), we see that the result asserts the essential selfadjointness of those constants of motion which are defined on the \(C^\infty\) vectors for \(V(t)\).

The lemma above may also be applied to the case of a second order wave equation to yield essential selfadjointness of operators commuting with \(-\Delta + g(x)\) on \(\mathbb{R}^n\). Specifically we have

Corollary 3. Let \(g\) be \(C^\infty\) and \(T = -\Delta + g(x)\) semibounded on \(L^2(\mathbb{R}^n)\), and let \(D_\infty\) be the largest subspace where all powers of \(T\) are defined. Suppose \(T_1\) is symmetric and defined on \(D_\infty\) such that \(T_1 T = TT_1\) on \(D_\infty\). Then \(T_1\) is essentially selfadjoint on \(C^\infty_0(\mathbb{R}^n)\).

References

