Classification of spaces of the same $n$-type for all $n$
HTML articles powered by AMS MathViewer
- by Clarence Wilkerson
- Proc. Amer. Math. Soc. 60 (1976), 279-285
- DOI: https://doi.org/10.1090/S0002-9939-1976-0474283-2
- PDF | Request permission
Abstract:
The set of homotopy equivalence classes of CW-spaces Y for which the Postnikov approximations are homotopy equivalent to those of a given space X is shown to be in one-to-one correspondence with ${\underleftarrow {\lim }^1}$ of a tower of homotopy automorphism groups.References
- J. F. Adams, An example in homotopy theory, Proc. Cambridge Philos. Soc. 53 (1957), 922–923. MR 91477
- Victor Belfi and Clarence Wilkerson, Some examples in the theory of $P$-completions, Indiana Univ. Math. J. 25 (1976), no. 6, 565–576. MR 418086, DOI 10.1512/iumj.1976.25.25045
- A. K. Bousfield and D. M. Kan, Homotopy limits, completions and localizations, Lecture Notes in Mathematics, Vol. 304, Springer-Verlag, Berlin-New York, 1972. MR 0365573
- Brayton I. Gray, Spaces of the same $n$-type, for all $n$, Topology 5 (1966), 241–243. MR 196743, DOI 10.1016/0040-9383(66)90008-5
- Peter Hilton, Guido Mislin, and Joseph Roitberg, Homotopical localization, Proc. London Math. Soc. (3) 26 (1973), 693–706. MR 326720, DOI 10.1112/plms/s3-26.4.693
- J. Peter May, Simplicial objects in algebraic topology, Van Nostrand Mathematical Studies, No. 11, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1967. MR 0222892
- Daniel Quillen, Rational homotopy theory, Ann. of Math. (2) 90 (1969), 205–295. MR 258031, DOI 10.2307/1970725
- Dennis Sullivan, Geometric topology. Part I, Massachusetts Institute of Technology, Cambridge, Mass., 1971. Localization, periodicity, and Galois symmetry; Revised version. MR 0494074 —, Rational homotopy theory (unpublished).
- Clarence W. Wilkerson, Applications of minimal simplicial groups, Topology 15 (1976), no. 2, 111–130. MR 402737, DOI 10.1016/0040-9383(76)90001-X
Bibliographic Information
- © Copyright 1976 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 60 (1976), 279-285
- MSC: Primary 55D15
- DOI: https://doi.org/10.1090/S0002-9939-1976-0474283-2
- MathSciNet review: 0474283