A NOTE ON KC WALLMAN COMPACTIFICATIONS

DARRELL W. HAJEK AND ANGEL E. JIMÉNEZ

ABSTRACT. In a previous paper, D. W. Hajek showed that if a space X is a T_3 space and A is a compact subset of WX, the Wallman compactification of X, then $X \cap A$ is a closed subset of X. This raises the question of whether this "closed intersection" property characterizes the T_3 spaces among the Hausdorff spaces. In the present paper, the authors show this conjecture is false by giving an example of a nonregular Hausdorff space whose Wallman compactification is a KC (compact closed)-space, and, hence, trivially satisfies this "closed intersection" property.

All spaces considered in this paper will be T_1 spaces. In [1] it was shown that if X is a T_3 space and if A is a compact subset of WX, the Wallman compactification of X, then $A \cap X$ is a closed subset of X. It is then natural to ask whether T_3 spaces are the only Hausdorff spaces which have this property. In this paper we give an example of a nonregular Hausdorff space whose Wallman compactification is a KC-space (i.e. is a space in which every compact subset is closed).

Recall that for any space X the Wallman compactification WX consists of the set { μ : μ is an ultrafilter in the lattice of all closed subsets of X} with topology generated by { $C(A) = {\mu \in : A \in \mu}$: A is a closed subset of X} as a base for the closed subsets of WX. With this topology WX is a compact T_1 space which is Hausdorff if and only if X is T_4 , and the function $\varphi_X: X \to WX$ defined by $\varphi_X(x) = {A : A is closed in X and <math>x \in A}$ is a dense embedding of X in WX. When no ambiguity can result it is common practice to ignore the distinction between X and $\varphi_X[X]$ and to speak of X as a subset of WX. We note that it is easily shown that if A is a closed compact subset of X then $cl_{WX}(A) = A$ and that for any closed subset A of X, $cl_{WX}(A) = C(A)$.

We denote by T the space whose elements are the points in the unit interval [0, 1] and whose topology is generated by the usual open subsets of [0, 1] together with $[0, 1] \sim \{1/n: n \text{ a natural number}\}$. It is clear that T is a Hausdorff space and that any open set containing the closed set $\{1/n\}$ must intersect every neighborhood of 0; so T is not regular (see [3, p. 86]).

Received by the editors August 4, 1975 and, in revised form, November 1, 1975.

AMS (MOS) subject classifications (1970). Primary 54D35; Secondary 54D10, 54D20, 54G20.

Key words and phrases. Wallman compactification, KC (compact closed)-space, "closed intersection" property, nonregular Hausdorff space.

THEOREM 1. If A is a compact subset of WT then $A \cap T$ is a closed subset of T.

PROOF. Suppose $A \cap T$ is not closed in T. Then $A \cap T$ has a limit point x in $T \sim A$. If $x \neq 0$ there is some number K such that n > K implies that $(0, 1] \cap [x - 1/n, x + 1/n]$ is a closed compact subset of T, and, hence, of WT. This then implies that $\{A \cap [x - 1/n, x + 1/n]: n > K\}$ is a collection of closed subsets of A which has the finite intersection property and empty intersection. Since A is compact no such collection can exist; so A can have no limit points in T other than 0. We note that any element of $WT \sim T$ is clearly in $C(\{1/n\})$, and thus for any $\varepsilon > 0$ the set $[0, \varepsilon) \sim \{1/n\}$ is open both in T and in WT; so if 0 is a limit point of A, there must be a decreasing sequence $\{a_n\}$ of elements of A converging to 0, none of the elements of which are in $\{1/n\}$. It is clear, however, that if $0 \notin A$, then $\{a_n\}$ is a closed subset of A which is not compact.

With this theorem the following corollary is immediate from [2, Theorem 1].

COROLLARY. If $f: X \to T$ is a Wallman extendible function, then the Wallman extension is unique.

Theorem 1 tells us that the T_3 spaces are not the only spaces which have closed intersections with compact subsets of their Wallman compactifications. However we promised more.

THEOREM 2. Every compact subset of WT is closed.

PROOF. Suppose A is a compact subset of WT which is not closed. Then A must have a limit point μ which is not in A. From Theorem 1 we know that $\mu \notin T$, and again we note that the only elements of $WT \sim T$ are in $C(\{1/n\}) \sim \{1/n\}$. We also note that the relative topology on $\{1/n\}$ is the discrete topology. Since $\{C(E): E \in \mu, E \subseteq \{1/n\}\}$ is a collection of closed subsets of WT whose intersection is $\{\mu\}$, it is immediate that there is some subset B of $\{1/n\}$ such that $B \in \mu$ and C(B) is disjoint from A. But since B is an infinite subset of a sequence, B itself must be a sequence. Then, as $A \cap T$ is closed in T, for each $x \in B$ there is an open subset \mathfrak{A}_x of T such that \mathfrak{A}_x is disjoint from A and $\mathfrak{A}_x \cap \{1/n\} = \{x\}$. It is then elementary to show that $C(B) \cup (\bigcup \mathfrak{A}_x)$ is an open subset of WT which contains μ and is disjoint from A.

We note that this process can be utilized in any compact Hausdorff space having a nonisolated first countable point to obtain the same results. It is not clear, however, whether a compact Hausdorff space with no first countable points must have a nonclosed subset which, when added to the closed sets yields a space with KC Wallman compactification or even the "closed intersection" property. The proof to Theorem 2 makes clear, however, that if a space is constructed by adding a set A to the closed subsets of a compact Hausdorff space and if the Wallman compactification of the subspace A is a KC-space, then the "closed intersection" property and having a KC Wallman compactification are equivalent. We also note that [3, pp. 92–93] contains another example of a nonregular Hausdorff space which can be shown to have a KC Wallman compactification. Finally, the Euclidian plane with topology generated by the usual open sets together with all sets of the form $\{(0,0)\} \cup \mathfrak{A}$ where \mathfrak{A} is obtained by deleting the positive y-axis from an open set of which it is a subset is an example of a Hausdorff space whose Wallman compactification does not have the "closed intersection" property.

BIBLIOGRAPHY

1. D. Hajek, A characterization of T_3 spaces, Indiana Univ. Math. J. 23 (1973/74), 23–25. MR 48 #4997.

2. ____, Functions with continuous Wallman extensions, Czechoslovak Math. J. 24 (99) (1974), 40-43.

3. L. A. Steen and J. A. Seebach, Jr., *Counterexamples in topology*, Holt, Rinehart and Winston, New York, 1970. MR 42 #1040.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF PUERTO RICO, MAYAGUEZ, PUERTO RICO 00708

DEPARTMENT OF MATHEMATICS, BOSTON UNIVERSITY, BOSTON, MASSACHUSETTS 02215